
Life cycle assessment of microalgae: Challenges and lessons learned

ESU-services Ltd., Schaffhausen

<u>www.esu-services.ch</u> <u>bussa@esu-services.ch</u>

fair consulting in sustainability since 1998

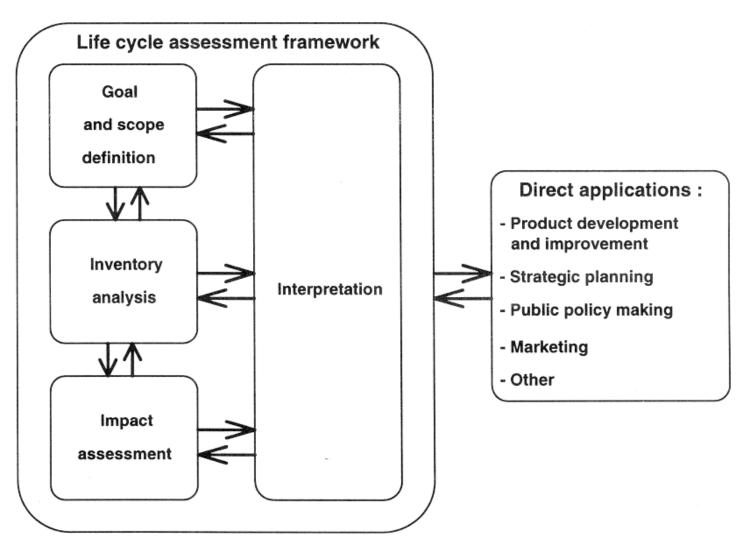
INTRODUCTION: LCA AND ESU

www.esu-services.ch

Page 2

What is an LCA ?

- A model: depiction of reality
 - A model of the full life cycle of a product or service and its environmental impact.
 - A model that shows consequences of these environmental impacts on our health, the ecosystem (plants, animals and fungi) the economy, etc.
- Each model is a simplification of reality



Overview Life Cycle Assessment

- Life cycle from cradle to grave
- Goal and Scope Definition
- Balance of all in- and outputs according to the defined system boundaries & functional unit \rightarrow Inventory
- Assessment of different environmental impacts (e.g. climate change, eutrophication, summer smog, etc...)
- Improvement and comparison of production processes

ISO standard 14040: LCA

-services

fair consulting in sustainability

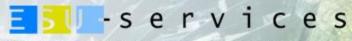
Dr Niels Jungbluth

Founded 1998 @ETHZ

Samuel Solin, Christoph Meili, Maresa Bussa, Martin Ulrich

Clients from industry, NGOs, administration, universities

25+ years and 350+ projects experience in life cycle assessment


Company database with more than ten thousands of datasets

All economic sectors coved

In more detail

Our offer	Features	Price start at (CHF/€)	Months
Assess existing data	E.g. CO2-eq/kg for one product	200	<1
Screening LCA	Short report and first analysis for internal use, based on data for your product	9000	2-6
Full LCA	Comparison of your products, detailed analysis, suitable for publication	15000	3-9
Parameter model	Play around and see selected results when modifying key parameters of your process	10000	2-6
ISO compliant LCA	Full comparative LCA, peer reviewed by a third party	20000	4-12
Do it yourself	SimaPro Software, training and coaching	9000	1-6
Review	Review, Validation, Verification	2500	1

LCA OF MICROALGAE: CHALLENGES AND LESSONS LEARNED

www.esu-services.ch

Page 8

Challenges: Emerging technology

- Technologies are often tested with small capacities and low technology-readiness-level
 - Optimum production parameter still to be determined
 - Less efficient

LCA results can be used to identify hotspots and improve technology
LCA results are often used to benchmark microalgae against reference products

Challenges: Comparisons

- Common benchmark products
 - Energetic use (e.g. biodiesel, bioethanol):
 - Diesel
 - Rape, Palm, Soybean, Sunflower
 - Feed and food:
 - Soybean, Rape, Pea, Whey
 - Egg, Fishmeal

Compared systems differ in scale and matureness
Unfavourable for microalgae

Case Study: Spray drier

 Microalgae Protein - Ingredients for the Food and Feed of the Future

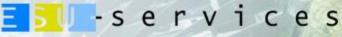
- Two species:
 - Chlorella vulgaris: heterotrophic cultivation
 - Tetraselmis chui: autotrophic cultivation
- Functional unit: biomass with 1 kg protein
- Scope: cultivation and drying

	Electricity consumption	Yield
Pilot-scale	8.8	68%
Industrial-scale	2.1	88%

-services

fair consulting in sustainability

Case study: C. vulgaris


PRO

FUTURE

								_
Impact category	Unit	Pilot-scale	Reduced electricit	ty consumption	Increase	ed yield	Comb	pined
Ionising radiation	kBq U-235 eq	40.500	20.212	-50%	31.047	-23%	15.370	-62%
Human toxicity, non-cancer	CTUh	1.067E-6	7.453E-7	-30%	7.98E-7	-25%	5.495E-7	-49%
Eutrophication, marine	kg N eq	0.199	0.168	-16%	0.119	-40%	0.095	-52%
Ozone depletion	kg CFC11 eq	6.346E-6	4.584E-6	-28%	4.84E-6	-24%	3.479E-6	-45%
Water use	m3 depriv.	67.737	39.055	-42%	51.772	-24%	29.609	-56%
Resource use, minerals and metals	kg Sb eq	4.934E-4	4.092E-4	-17%	3.721E-4	-25%	3.071E-4	-38%
Resource use, fossils	MJ	1856.873	1120.679	-40%	1422.201	-23%	853.324	-54%
Land use	Pt	558.348	438.248	-22%	427.381	-23%	334.576	-40%
Ecotoxicity, freshwater	CTUe	1579.496	1208.941	-23%	1150.120	-27%	863.782	-45%
Acidification	mol H+ eq	0.517	0.338	-35%	0.394	-24%	0.255	-51%
Particulate matter	p inc.	2.321E-6	1.804E-6	-22%	1.756E-6	-24%	1.356E-6	-42%
Climate change	kg CO2 eq	85.990	50.930	-41%	65.506	-24%	38.415	-55%
Human toxicity, cancer	CTUh	4.561E-8	3.57E-8	-22%	3.31E-8	-27%	2.545E-8	-44%
Eutrophication, terrestrial	mol N eq	1.052	0.787	-25%	0.798	-24%	0.593	-44%
Photochemical ozone formation	kg NMVOC eq	0.204	0.131	-36%	0.154	-25%	0.098	-52%
Eutrophication, freshwater	kg P eq	0.084	0.047	-44%	0.061	-27%	0.033	-60%

Larger reduction can be achieved with reduced electricity consumption

 \succ In total, impacts can be reduced by ~ 50%

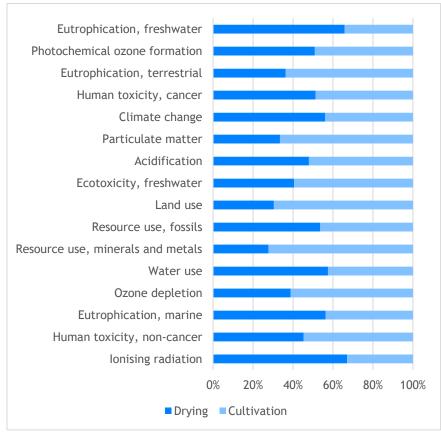
Case study: T. chui

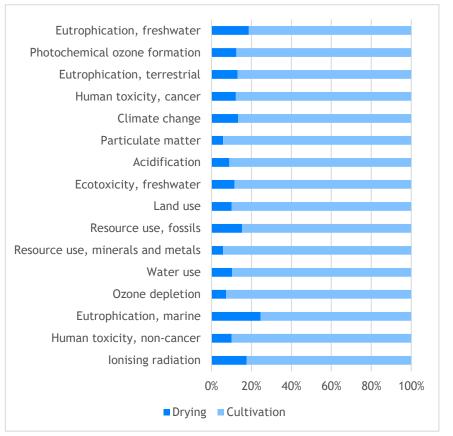
PRO

FUTURE

Impact category	Unit	Pilot-scale	Reduced electricit	ty consumption	on Increased yield		Combined	
Ionising radiation	kBq U-235 eq	126.631	109.909	-13%	96.979	-23%	84.146	-34%
Human toxicity, non-cancer	CTUh	3.998E-6	3.733E-6	-7%	3.047E-6	-24%	2.843E-6	-29%
Eutrophication, marine	kg N eq	0.389	0.364	-7%	0.271	-30%	0.251	-35%
Ozone depletion	kg CFC11 eq	2.757E-5	2.612E-5	-5%	2.111E-5	-23%	1.999E-5	-27%
Water use	m3 depriv.	310.343	286.702	-8%	237.704	-23%	219.561	-29%
Resource use, minerals and metals	kg Sb eq	0.002	0.002	-4%	0.001	-24%	0.001	-26%
Resource use, fossils	MJ	5356.295	4749.492	-11%	4100.285	-23%	3634.599	-32%
Land use	Pt	1384.009	1285.017	-7%	1058.814	-23%	982.844	-29%
Ecotoxicity, freshwater	CTUe	4661.545	4356.118	-7%	3519.835	-24%	3285.437	-30%
Acidification	mol H+ eq	2.291	2.143	-6%	1.754	-23%	1.640	-28%
Particulate matter	p inc.	1.113E-5	1.071E-5	-4%	8.515E-6	-24%	8.187E-6	-26%
Climate change	kg CO2 eq	297.705	268.807	-10%	227.701	-24%	205.524	-31%
Human toxicity, cancer	CTUh	1.601E-7	1.519E-7	-5%	1.211E-7	-24%	1.148E-7	-28%
Eutrophication, terrestrial	mol N eq	2.422	2.204	-9%	1.847	-24%	1.679	-31%
Photochemical ozone formation	kg NMVOC eq	0.691	0.632	-9%	0.528	-24%	0.482	-30%
Eutrophication, freshwater	kg P eq	0.245	0.215	-12%	0.185	-24%	0.162	-34%

Larger reduction can be achieved with increased yield
In total, impacts can be reduced by ~ 30%


Case study: Spray drier


C. vulgaris

fair

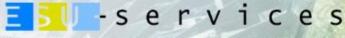
services

T. chui

Lessons learned: General

- Electricity consumption is a key driver of environmental impacts
- Cultivation is important
 - Increase yield of downstream processes
 - Test waste-streams as nutrition/carbon source
- Results cannot always be transferred from one specie to another

Lessons learned: Functional unit


- Especially relevant for food and feed sector
- Often a mass-based functional unit is used
- Might give wrong incentives if nutritional value differs considerably
- Main function of food is to provide nutrients

at least present information about the content of main nutrients
allows the reader to judge if different options really can be perceived as equal for the intended function in the diet

Lessons learned: Comparisons

Name	Life Cycle Assessment	Monte-Carlo Simulation (MCS)	MCS backwards	
Research question	Is A be	When is A better than B?		
Starting point	$x a_1 \rightarrow y a_2 \rightarrow \uparrow 1 A$ $z a_3 \rightarrow \uparrow$	$\begin{array}{ccc} (x_{\min} \cdot x_{\max}) & a_1 \longrightarrow \\ (y_{\min} \cdot y_{\max}) & a_2 \longrightarrow \\ (z_{\min} \cdot z_{\max}) & a_3 \longrightarrow \end{array} \rightarrow 1 A$		
Result Page 17	A B 7 D D D D D D D D D D D D D D D D D D		$\begin{array}{ c c c c c c c } \hline X & Y & Z \\ \hline R_1 & X_1 & X_1 & Z_1 \\ \hline R_n & X_n & Y_n & Z_n \\ \hline & X_{lim} & Y_{lim} & Z_{lim} \end{array}$	

Copyright notice

All rights reserved. The contents of this presentation (a. o. texts, graphics, photos, logos etc.) and the presentation itself are protected by copyright. They have been prepared by ESU-services Ltd.. Any distribution or presentation of the content is prohibited without prior written consent by ESU-services Ltd.. Without the written authorization by ESU-services Ltd. this document and/or parts thereof must not be distributed, modified, published, translated or reproduced, neither in form of photocopies, microfilming nor other - especially electronic - processes. This provision also covers the inclusion into or the evaluation by databases.

Permitted is the use of contents published on our webpage according to scientific standards (small parts copied or cited with clear citation given to the webpage were downloaded).

Contraventions will entail legal prosecution.

In case of any questions, please contact:

Dr. Niels Jungbluth, CEO - Chief Executive Officer ESU-services Ltd. - fair consulting in sustainability Vorstadt 14 CH-8200 Schaffhausen <u>www.esu-services.ch</u> tel +41 44 940 61 32 jungbluth@esu-services.ch

© Copyright ESU-services Ltd. 10.06.2022