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The appropriateness of the fossil Cumulative Energy
Demand (CED) as an indicator for the environmental
performance of products and processes is explored with
a regression analysis between the environmental life-cycle
impacts and fossil CEDs of 1218 products, divided into
the product categories “energy production”, “material
production”, “transport”, and “waste treatment”. Our results
show that, for all product groups but waste treatment,
the fossil CED correlates well with most impact categories,
such as global warming, resource depletion, acidification,
eutrophication, tropospheric ozone formation, ozone
depletion, and human toxicity (explained variance between
46% and 100%). We conclude that the use of fossil fuels
is an important driver of several environmental impacts and
thereby indicative for many environmental problems. It
may therefore serve as a screening indicator for environmental
performance. However, the usefulness of fossil CED as a
stand-alone indicator for environmental impact is limited by
the large uncertainty in the product-specific fossil CED-
based impact scores (larger than a factor of 10 for the
majority of the impact categories; 95% confidence interval).
A major reason for this high uncertainty is nonfossil
energy related emissions and land use, such as landfill
leachates, radionuclide emissions, and land use in agriculture
and forestry.

Introduction
Environmental assessment tools are used to support envi-
ronmental decision-making, such as about industrial process

optimization or the choice of environmentally friendly
products. There are various such environmental assessment
tools, the most comprehensive of which is life-cycle assess-
ment (LCA). LCA is a tool for analyzing and comparing the
potential environmental impact of products (and services)
along their entire life cycle, that is, from the extraction of
resources to manufacturing, use, and final disposal of
products (1). LCA starts from a definition of the so-called
functional unit of a product or service (e.g., the production
of 1 MJ of electricity or the supply of 1 h of office light). In
an inventory analysis, a table is compiled of all emissions
and resource extractions that occur as a consequence of the
production of one functional unit of product. A relatively
large number of releases of pollutants and extractions of
resources can be part of the inventory table (2). In a
subsequent impact assessment, the additional impact of these
emissions and extractions is quantified (3).

One of the difficulties of carrying out an LCA is that a
relatively large amount of data is required. Although various
software programs with inventory data are available (4-6),
the data gathering for specific production processes is not
without problems. This is due to the fact that process data
are not (publicly) available or that they are not provided in
a standardized format (7-9).

The applicability of LCAs would greatly improve, if less
information with relatively high reliability could be used to
compare or improve production processes (10-12). This is
particularly the case for LCA studies focusing on early product
development for which generally only little information is
available on materials and processes. A potentially suitable
option to simplify LCA is to apply the concept of Cumulative
Energy Demand (CED) as a screening impact indicator (13-
19). The CED represents the energy demand, valued as
primary energy during the complete life cycle of a product
(20, 21). Particularly, from fossil energy demand it is well
known that it is dominantly responsible for global warming
and depletion of fossil resources (22-24). As compared to
complete LCA studies, the calculation of CEDs requires
substantially less information in the inventory analysis; that
is, no emission estimates and impact assessment factors are
required. Data to estimate energy requirements are in most
cases readily available (13). Up to now, it has, however, not
been thoroughly tested to what extent the CED-outcomes
follow the results of the life-cycle impact assessment.

We studied the correlation between cumulative energy
demand of fossil resources and a number of environmental
impact categories (global warming, stratospheric ozone
depletion, acidification, eutrophication, photochemical ozone
formation, land use, resource depletion, and human toxicity).
The study is based on LCA- and CED-data of 1218 product
systems in the western economy. The potential usefulness
and appropriateness of applying fossil CED as a screening
indicator for environmental impact in LCA is discussed.

Methodology
Cumulative Energy Demand (CED). The Cumulative Energy
Demand (CED) of a product represents the direct and indirect
energy use throughout the life cycle, including the energy
consumed during the extraction, manufacturing, and disposal
of the raw and auxiliary materials (20). Different concepts
for determining the primary energy requirement exist. For
CED calculations, one may chose the lower or the upper
heating value of primary energy resources where the latter
includes the evaporation energy of the water present in the
flue gas. Furthermore, one may distinguish between energy
requirements of renewable and nonrenewable resources. A
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discussion on the pros and cons for the different valuation
concepts can be found in Frischknecht et al. (21).

In this study, for every product, the fossil cumulative
energy demand, that is, from hard coal, lignite, natural gas,
and crude oil, has been derived from Frischknecht and
Jungbluth (25). Table 1 shows the typical upper heating values
for the fossil primary energy resources required in the fossil
CED calculations.

Life-Cycle Impact Assessment. In LCA, one class of impact
methods quantifies the potential impact of releases and
extractions by way of so-called midpoint indicators. Indica-
tors in this category are relatively close to environmental
interventions (3). In the present study, we looked at a subset
of commonly applied impact categories (Table 2). Ionizing
radiation, for example, caused by high radioactive waste
and radionuclide emissions from nuclear power plants, has
not been included as an impact category, as this type of
impact is better reflected by nuclear CED than by fossil CED
(25).

The midpoint impact scores for a product p can be
calculated by:

where ISm,p is the impact score of product p for midpoint
indicator m (kg reference substance), Mx,i,p is the interven-
tion x (emission of substances or extraction of resources)
in compartment i (e.g., air, soil, water) caused by the
life cycle of product p (kg), and Qx,i,m is the characteriza-
tion factor of intervention x in compartment i related to
impact category m (kg reference substance kg-1). Charac-
terization factors are intervention-specific, quantitative
representations of potential impacts per unit emission of a
substance or unit extraction of resources. In the present study,
we used the characterization factors reported by Guinée et
al. (3) and implemented according to Frischknecht and
Jungbluth (25).

Life-Cycle Inventory Database. The Ecoinvent data-
base v1.2 (4), containing life-cycle information for many
products consumed in the western economy, has been
used to derive cumulative fossil energy demands and life-
cycle impact scores. Table 3 provides an overview of the
product groups and the corresponding number of products
considered. Energy production includes both heat and
electricity production processes by nonrenewable energy
sources (oil, hard coal, lignite, natural gas, nuclear) and

renewable energy sources (hydropower, photovoltaic,
wood, wind). Material production comprises many different
product types, including plastics, chemicals, metals, agri-
cultural products, and building materials. Transport includes
transport of products by road, ship, train, airplane, and
pipelines. Finally, waste treatment represents various types
of landfill and incineration. We confined the analysis to
products (and services) reported in equal units to avoid
distortions in the regression analysis due to largely different
(and arbitrary) sizes of the functional units. To minimize the
interdependency between the production processes, we
limited the energy production dataset to production of heat
and electricity at the operation unit only. Further aggregated
unit processes, such as electricity mixes in the various
European countries, were excluded from the dataset. Fur-
thermore, for cogeneration energy processes allocation based
on energy content is applied only, excluding results for the
same process, but based on another allocation rule, such as
exergy.

Linear Regression. Linear regression analysis was per-
formed to relate the environmental impact scores with
cumulative fossil energy demands. The data in all subgroups
were log-transformed to account for their skewed distribu-
tions:

where ISp is the environmental impact score for product p
and CEDp represents the cumulative energy demand (fossil
or renewable) of product p. The regression equations were
optimized using a linear least-squares fit to find appropriate
values for the slope (a) and intercept (b) of the regressions.
Apart from the regression parameters a and b, the correlation
coefficient (r2) and the residual standard error (SE) were
derived. Linear regression plots with 95% confidence intervals
of the expected IS-values are also provided. The Supporting
Information gives detailed information on the calculation of
SE and the 95% confidence intervals.

Additionally, the uncertainty attached to using the CED
as an indicator for environmental impact is summarized with
an uncertainty factor k derived from the SE:

The uncertainty factor k is defined such that 95% of the values
of a stochastic variable are within a factor k, assuming a
log-normal distribution.

Results
Figures 1-4 show the regression results of the eight impact
categories included for the respective product categories
energy production, material production, transport, and waste
treatment. The results show that particularly for global
warming and resource depletion, the explained variance (r2)
of the regression analysis is high (>93%), except for global
warming related to waste treatment processes. In contrast,
the explained variance of fossil CED concerning land use is
low for all product categories (<57%). For stratospheric ozone

TABLE 1. Upper Heating Values of Fossil Primary Energy
Resources (25)

fossil energy resource unit value

hard coal MJ kg-1 19
lignite MJ kg-1 10
natural gas MJ m-3 40
crude oil MJ kg-1 46

TABLE 2. Selected Impact Indicators and Corresponding
Characterization Factors on the Midpoint Level (3)

impact indicator spatial scale time span

global warming global 100 years
stratospheric ozone depletion global infinite
acidification Europe infinite
eutrophication global infinite
photochemical ozone formation Europe 5 days
land use global not specified
resource depletion global not specified
human toxicity Europe infinite

ISm,p ) ∑
x

∑
i

Mx,i,p‚Qx,i,m (1)

TABLE 3. Product Groups Defined, Derived from Ecoinvent
Centre (4)

product group functional unit number of products

energy production 1 MJ 226
material production 1 kg 750
transport 1 tkm 28
waste treatment 1 kg 214
total 1218

ISp ) 10b‚CEDp
a (2)

k ) 97.5p
2.5p

) (101.96‚SE)2 (3)
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depletion, the explained variance is between 49% and 55%
for energy production, material production, and transport,
but higher than 90% for waste treatment.

For acidification, eutrophication, photochemical ozone
formation, and human toxicity, the explained variance of
the fossil CED is always higher for material production and
transport systems than for energy production and waste
treatment. Generally, the explained variance of the regression
equations for these impact categories is always higher than
50%, reaching up to 86% in some cases. However, exceptions
are the regression equations for human toxicity and eutroph-

ication caused by waste treatment processes that showed a
distinctly low explained variance (<20%).

It can be seen from Figures 1-4 and Table 4 that the 95%
confidence intervals of the regression equations generally
span 1-4 orders of magnitude. The exceptions are abiotic
depletion and global warming, except for waste treatment,
with confidence intervals ranging from 0.1 to 1 order of
magnitude and land use with confidence intervals ranging
from 2 to 4.6 orders of magnitude. The regression equations
for stratospheric ozone depletion caused by material pro-
duction and global warming and human toxicity caused by

FIGURE 1. Linear regression plots with 95% confidence intervals (dotted lines), based on 226 energy production processes in MJ, for fossil
cumulative energy demand (CED) and, respectively, global warming (A), resource depletion (B), acidification (C), eutrophication (D),
photochemical ozone formation (E), stratospheric ozone depletion (F), land use (G), and human toxicity (H).
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waste treatment processes also have 95% confidence intervals
larger than 3 orders of magnitude.

Note that for 102 products the Ecoinvent database reports
a net negative value for CO2 emissions, resulting in negative
impact scores for the midpoint indicator “global warming”.
The reason for such negative values is, for instance, the use
of renewable materials (e.g., wood) as primary material, and
therefore the sequestration of carbon and extraction of CO2

from the atmosphere. As the regression method on log-

transformed data is not suitable to estimate negative impact
scores, the datasets of these products were not included in
the global warming regression analysis based on the log-
transformed data. To check the influence of the removal of
negative global warming scores on the outcome, the global
warming regression analysis was also performed with the
full dataset without log-transformation. Figure 2A shows that
the global warming regression lines with and without log-
transformation are virtually the same.

FIGURE 2. Linear regression plots with 95% confidence intervals (dotted lines), based on 750 material production processes in kg, for
fossil cumulative energy demand (CED) and, respectively, global warming (A), resource depletion (B), acidification (C), eutrophication (D),
photochemical ozone formation (E), stratospheric ozone depletion (F), land use (G), and human toxicity (H). (A) also includes the global
warming regression plot for the full dataset without log-transformation (dashed line): GW ) 0.077‚CED, r2 ) 1.00.
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Discussion

What do the results tell us about the usefulness of cumulative
energy demand as predictor of environmental impacts in
LCA case studies? It seems that fossil cumulative energy
demand explains a significant part of the variation in a variety
of environmental impacts between products. This finding
confirms the results of other studies, which indicate that the
burning of fossil fuels is a major contributor to a number of
environmental problems, such as global warming, acidifica-
tion, eutrophication, and photochemical ozone formation

(e.g., 22-24, 26, 27). Furthermore, depletion of abiotic
resources is commonly caused by the use of the fossil fuels
oil, coal, and natural gas (28), clarifying the high explained
variance of the CED regression line for the category resource
depletion. Our findings also suggest that efforts to save fossil
energy demand are in many cases justified from an envi-
ronmental point of view. However, it does not automatically
imply to substitute nuclear power for fossil power, because
fossil CED evidently does not reflect the impacts of nuclear
power. In contrast to the emission-related impact categories,
land use and fossil CED show a relatively low explained

FIGURE 3. Linear regression plots with 95% confidence intervals (dotted lines), based on 28 transportation processes in tkm, for fossil
cumulative energy demand (CED) and, respectively, global warming (A), resource depletion (B), acidification (C), eutrophication (D),
photochemical ozone formation (E), stratospheric ozone depletion (F), land use (G), and human toxicity (H).
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variance. Land use plays an important role in relation to the
production of renewable energy carriers and less for fossil
fuel extraction (29, 30). Therefore, land use should be used
as a separate indicator for environmental performance, next
to fossil CED.

The high explained variance between the majority of
impact categories considered and the fossil CED may be seen
as an argument for the application of sustainable develop-
ment indicators based on fossil energy demand and land
use, such as the ecological footprint methodology (31, 32),

in place of complex methods such as LCA. However, for most
product group-impact category combinations, except for
abiotic depletion, the linear regression equations resulted in
uncertainties of 1-4 orders of magnitude (Table 4) (95%
confidence interval). As compared to the uncertainty within
life-cycle impact scores for various product comparisons
(33-35), the residual variation in the regression equations
is substantial. Apparently, the impacts of products are not
only related to fossil CED, but also to process-specific
emissions. For instance, in agricultural production processes,

FIGURE 4. Linear regression plots with 95% confidence intervals (dotted lines), based on 214 waste treatment processes in kg, for fossil
cumulative energy demand (CED) and, respectively, global warming (A), resource depletion (B), acidification (C), eutrophication (D),
photochemical ozone formation (E), stratospheric ozone depletion (F), land use (G), and human toxicity (H).
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part of the category “material production”, nonenergy related
nitrogen emissions via fertilizers and manure application to
agricultural land are the main contributor to eutrophication
(36). Another example is the production of plastics and
chemicals in which process-specific emissions of halogenated
hydrocarbons play a relatively important role with regard to
stratospheric ozone depletion (37). Furthermore, waste
treatment processes show a relatively high uncertainty for
global warming and toxicity. This is caused by nonenergy
related emissions, such as methane air emissions and long-
term heavy metal leaching from land fills (38).

Apart from process-specific emissions, the use of end-
of-pipe technologies will also reduce the correlation between
fossil energy use and environmental impacts, because these
technologies reduce emissions to the environment at the
expense of energy use. In fact, end-of-pipe technologies
applied in energy production and waste treatment processes
are one explanation for the systematically lower explained
variance of fossil CED for acidification, eutrophication,
photochemical ozone formation, and human toxicity for these
product categories, as compared to the product categories
material production and transport.

Another shortcoming to consider is that in the current
study we evaluated the fossil CED with the environmental
impacts assessed according to the LCA methodology, but
not with observed environmental impact. This implies that
in the current work, impacts missing in LCA have not been
tested with regard to the CED either. For instance, some
environmental problems such as scarcity of clean drinking
water, salination, endocrine disruption, and indoor exposure
to chemicals are usually neglected in LCA (and in the present
paper). We do not expect that these impacts will have a good
correlation with the fossil CED.

It should also be noted that the correlation analysis is
based on cradle-to-gate and waste treatment data only. For
a complete cradle-to-grave assessment, we would additionally
need data on intermediate steps, such as product manu-
facturing and use. This information is for most products not
readily available. Further research is required to unravel the
correlation between fossil CED and environmental impacts
on a cradle-to-grave basis.

Nevertheless, the overall picture suggests that fossil energy
demand is indicative for many environmental problems.
Fossil CED can therefore be used as a screening indicator for
environmental performance instead of performing a full LCA,
for instance, in the absence of sufficient data. However, care
should be taken in case the environmental performance of
individual product systems is to be assessed and compared.
It was shown that environmental impacts could not be fully
explained by fossil energy use for many products, implying
that detailed LCA studies are still required for most product
groups and impact categories.

Supporting Information Available
Additional information on the calculation of the confidence
interval of the predicted values. This material is available
free of charge via the Internet at http://pubs.acs.org.
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Cycle Inventories: Dübendorf, 2004; pp 31-38.

(26) Streets, D. G.; Tsai, N. Y.; Akimoto, H.; Oka, K. Trends in
Emissions of Acidifying Species in Asia, 1985-1997. Water, Air,
Soil Pollut. 2001, 130, 187-192.

(27) Derwent, R. G.; Jenkin, M. E.; Saunders, S. M.; Pilling, M.
J.; Simmonds, P. G.; Passant, N. R.; Dollard, G. J.; Dumitrean,
P.; Kent, A. Photochemical Ozone Formation in North West
Europe and its Control. Atmos. Environ. 2003, 37, 1983-
1992.

(28) Huijbregts, M. A. J.; Breedveld, L.; Huppes, G.; De Koning, A.;
Van Oers, L.; Suh, S. Normalisation figures for environmental
life-cycle assessment - The Netherlands (1997-1998), Western
Europe 1995 and the world (1990 and 1995). J. Clean. Prod.
2003, 11, 737-748.

(29) Jungbluth, N.; Bauer, C.; Dones, R.; Frischknecht, R. Life Cycle
Assessment for Emerging Technologies: Case Study for Pho-
tovoltaic and Wind Power. Int. J. Life Cycle Assess. 2005, 10,
24-34.

(30) Hischier, R.; Althaus, H.-J.; Werner, F. Developments in Wood
and Packaging Materials Life Cycle Inventories in Ecoinvent.
Int. J. Life Cycle Assess. 2005, 10, 50-58

(31) Wackernagel, M.; Yount, J. D. The Ecological Footprint: an
Indicator of Progress Toward Regional Sustainability. Environ.
Monit. Assess. 1998, 51, 511-529.

(32) Wackernagel, M.; Schulz, N. B.; Deumling, D.; Linares, A. C.;
Jenkins, M.; Kapos, V.; Monfreda, C.; Loh, J.; Myers, N. Tracking
the Ecological Overshoot of the Human Economy. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 9266-9271.

(33) Huijbregts, M. A. J.; Gilijamse, W.; Ragas, A. M. J.; Reijnders, L.
Evaluating Uncertainty in Environmental Life-Cycle Assessment.
A Case Study Comparing Two Insulation Options for a Dutch
One-Family Dwelling. Environ. Sci. Technol. 2003, 37, 2600-
2608.

(34) Geisler, G.; Hellweg, S.; Hofstetter, T. B.; Hungerbuehler, K. Life-
Cycle Assessment in Pesticide Product Development: Methods
and Case Study on Two Plant-Growth Regulators from Different
Product Generations. Environ. Sci. Technol. 2005, 39, 2406-
2413.

(35) Geisler, G.; Hellweg, S.; Hungerbühler, K. Uncertainty Analysis
in Life Cycle Assessment (LCA): Case Study on Plant-Protection
Products and Implications for Decision Making. Int. J. Life Cycle
Assess. 2005, 10, 184-192.

(36) Nemecek, T.; Erzinger, S. Modelling Representative Life Cycle
Inventories for Swiss Arable Crops. Int. J. Life Cycle Assess. 2005,
10, 68-76.

(37) Hellweg, S.; Fischer, U.; Scheringer, M.; Hungerbühler, K.
Environmental Assessment of Chemicals: Methods and Ap-
plications to a Case Study of Organic Solvents. Green Chem.
2004, 6, 418-427.

(38) Doka, G.; Hischier, R. Waste Treatment and Assessment of Long-
Term Emissions. Int. J. Life Cycle Assess. 2005, 10, 77-84.

Received for review August 25, 2005. Revised manuscript
received November 30, 2005. Accepted November 30, 2005.

ES051689G

H 9 ENVIRON. SCI. & TECHNOL. / VOL. xx, NO. xx, xxxx PAGE EST: 7.4


