LCA of Burning Different Solid Biomass Substrates

René Itten, Niels Jungbluth ESU-services Ltd., Uster, Switzerland

47th LCA Discussion Symposium Berne, 23. April 2012

Introduction

- LCI's for direct combustion of biomass substrates
- Environmental impacts of direct combustion
- Quantify emissions and impacts
- Comparison biomass substrates to wooden and fossil fuels
- Influence of the substrates and combustion technology

Preliminary Study

- Potential Substrates:
 - About 40 substrates
 - Kernels, Shells, Pomaces and other wastes
 - Mainly by-products and wastes
- Selected: Olive pomace, coffee grounds, poultry litter, horse dung and pig slurry
- Based on data availability

Life cycle inventory analysis

- New LCI for combustion of different solid biomass substrates
- Processes included:
 - substrate preparation
 - biomass combustion
 - ash disposal
- Cut-Off approach for substrates

System overview olive pomace

System overview pellets

Coffee grounds

Poultry litter

System overview dung and slurry Horse dung Horse Dung / Pig Slurry

Pig slurry

Disposal routes for the ash

Ash disposal for biomass substrates modeled like for wood according to ecoinvent

Flue gas treatment

Cyclone

Electrostatic filter

Page 9

Combustion technology

General description	Device	Cyclone	Electro- static filter	Comment	
Olive pomace	tubular reactor	no	no	experiment in lab	
Coffee ground pellets	automatic furnace	no	no	wood combustion	
Poultry litter pellets	grate furnace	yes	no	pilot plant	
Horse dung and wood	arata furnaca	yes	yes	wood combustion,	
chips	grate furnace			filters did not work	
Slurry solids and bark	boilorfurpaco	no	no	wood combustion	
chips					

combustion technology and flue gas treatment with improvement potentials

Elemental composition

Elemental composition	Olive pomace	Coffee ground pellets	Poultry litter pellets	Horse dung & wood chips	Pig slurry solids & bark chips	Wood, Logs
Unit	kg/kg fuel. drv	kg/kg fuel, drv	kg/kg fuel, drv	kg/kg fuel, dry	kg/kg fuel, drv	kg/kg fuel. drv
Carbon C	47.00%	51.20%	40.00%	48.00%	46.50%	49.80%
Hydrogen H	5.70%	5.50%	6.50%	5.50%	5.50%	6.00%
Oxygen O	38.40%	40.40%	35.50%	37.30%	35.00%	44.00%
Nitrogen N	1.10%	0.00%	3.83%	0.18%	2.20%	0.08%
Sulphur S	0.10%	0.00%	0.00%	0.03%	0.43%	0.01%
Ash content	7.70%	2.90%	14.20%	9.00%	10.40%	0.10%
Total dry mass	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Moisture content	14.00%	14.60%	15.00%	45.00%	61.00%	14.00%

> Biomass substrates have a higher nitrogen, sulphur and ash content

> Manure mixtures are extremely wet fuels

Life cycle impact assessment

- Functional unit: Provision of 1 MJ of useful heat
- Indicators: Ecological Scarcity 2006 and IPCC GWP
- Main contributors ecological scarcity and GWP
- Heavy metal emissions into soil

Ecological Scarcity 2006

High emission during combustion lead to higher total impacts than for conventional fuels

Ecological Scarcity 2006 Air Emissions

> Particle, NO_X and Benzene emissions cause more than 50% of the environmental impacts in case of the biomass substrates

IPCC Global Warming Potential

> Fossil fuels cause higher GWP than wood and biomass

E - S e r v i c e S

Results: Soil emissions

Biomass substrates tend cause higher heavy metal emissions than wood but the emissions are still comparable

- Biomass substrates cause higher impacts compared to wooden and fossil fuels according to ecological scarcity 2006
- Biomass substrates cause lower greenhouse gas emission compared to fossil fuels according to IPCC GWP
- Trade-off between GWP and overall environmental impacts

- Particulate matter emissions cause the highest share of the impacts according to ecological scarcity
- High uncertainty because lacking data regarding particle distribution for biomass substrates
- Some of the biomass substrates cause higher heavy metal emissions than wooden fuels but for most of the substrates the heavy metal emissions are equal or lower compared to wooden fuels

- No recommendation can be made regarding the furnace type
- Data mainly for pilot plants without flue gas treatment
- High potential to reduce particle emissions with basic flue gas treatment

Flue gas treatment is essential to minimize particle emissions during biomass combustion. The use of biomass substrates can reduce greenhouse gas emissions, at the cost of increased particulate matter

emissions.

Thanks for your attention!

René Itten

info@esu-services.ch

www.esu-services.ch

ESU-services GmbH, Uster, Schweiz

Download the study and electronic data: <u>http://www.lc-inventories.ch/</u>

Acknowledgements: The work presented here was made possible thanks to financial support from the Swiss Federal Office for Energy (FOEN).

Page 21

Additional Slides

Results: Coffee grounds Direct combustion vs MSWI

Combustion of coffee grounds in MSWI causes lower impacts

Results: Scenarios for Ash Disposal Ecological Scarcity 2006

Page 24

Results: Scenarios fuel preparation Ecological Scarcity 2006 and IPCC GWP

Page 25

Substrates considered in this study (1)

Olive pomace

Coffee grounds

Poultry Litter pellets

Substrates considered in this study (2)

Horse dung and wood chips

Slurry solids and wood chips

