

2nd International ecoinvent Meeting Lausanne, March 14, 2008

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

bioenergy and biomaterials: biofuels

Niels Jungbluth, ESU-services Ltd., www.esu-services.ch

Topics

- Goal and scope of the project "Life cycle inventories of bioenergy"
- Allocation methodology
- Specific regional problems
 - Soy beans
 - Plant oils
 - Sugar cane
- Results of LCIA study
- Conclusions for inventories of biofuels

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Niels Jungbluth

Problem setting "Ökobilanz von Energieprodukten"

- Diverging results for bioenergy and biofuels in separate studies
- ecoinvent data v1.3 covered only a small part of bioenergy chains. No common database
- · Aims to fully cover the most important bioenergy chains
- Main issue biofuels in Switzerland or imported
- Support for energy policy (fuel tax reductions)
- Examination for GHG reduction potential
- Investigation of several environmental aspects of "biofuels" supply chains

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Participating organisations

- Project leader: Niels Jungbluth, ESU-services Ltd.
- Financing:
 - Swiss Federal Offices for Energy (BFE), Agriculture (BLW) and Environment, Forests and Landscape (SAEFL)
 - Erdöl-Vereinigung, Zurich; Alcosuisse, Berne; Entsorgung und Recycling Zürich
- Inventory experts:
 - Carbotech AG, Basel
 - Chudacoff Oekoscience, Zürich
 - Doka Ökobilanzen
 - ENERS Energy Concept, Lausanne
 - INFRAS, Bern
 - Swiss Federal Institute of Technology Zürich (ETHZ)
- ecoinvent manager: Rolf Frischknecht, ecoinvent Centre
- 5

Goal and Scope

- Time frame 2005 or new future technologies
- Investigation from well to Swiss wheel (cradle-to-grave)
- Products from multi-output processes are investigated with allocation factors that can be varied by the data user
- · All direct co-products are included in the analysis
- Consistent investigation of energy, food, fodder and material products from biomass
- Clear differentiation of fossil and organic carbon
- Publication with ecoinvent data v2.0 late 2007 (www.ecoinvent.org)

ecoinvent

Swiss Centre For Life Cycle

Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

ETH

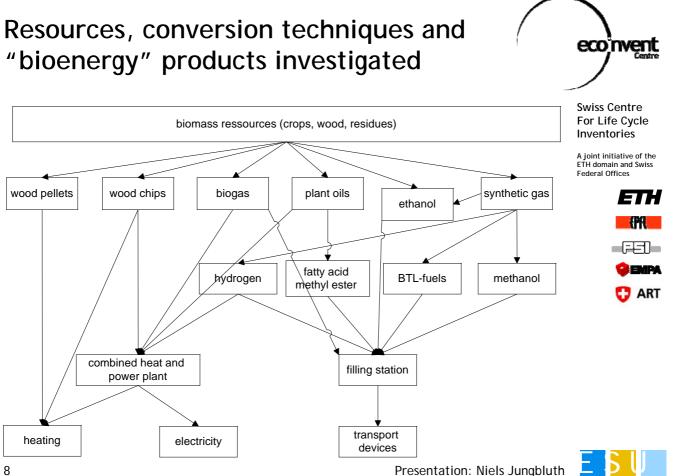
FA

-FF1-

EMPA

ART

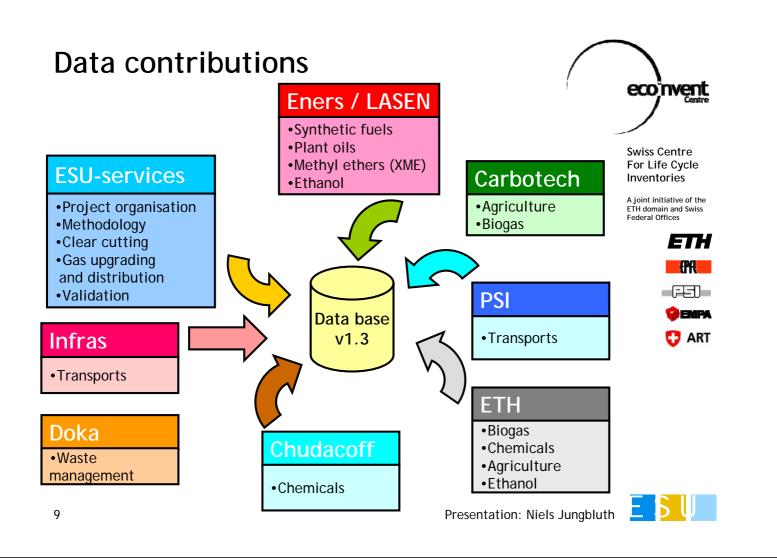
Swiss Centre For Life Cycle Inventories



Possible classifications of fuels

- Chemical classification of energy carrier
 - methane, ethanol, methanol, hydrogen, oils, methyl ester, liquids (petrol, diesel), ETBE, MTBE
- Resources used
 - Non-renewable: crude oil, natural gas, coal, nuclear
 - Renewable: energy crops (edible, non-edible), algae, forest wood, biomass residues, sun, wind
- Type of conversion process
 - mechanical, chemical reaction, thermal treatment, fermentation, anaerobic digestion, gasification, Fischer-Tropsch synthesis, biotechnical
- Marketing:
 - Sunfuel, Sundiesel, Ökodiesel, Biodiesel, Naturgas, 1st, 2nd, 3rd generation
- 7

Presentation: Niels Jungbluth



Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

ecoinvent

Harmonization of data collection

- Clear definition of product properties
- Guidelines for allocation
- Standard assumptions for prices in allocation
- Standard distances for biomass transports
- Standard data for regional storage
- Carbon balance for biogenic fuels has been corrected in allocation according to product properties

For Life Cycle Inventories

Investigated biofue	els	econvent
<section-header><text><text></text></text></section-header>	<text></text>	Swiss Centre For Life Cycle Inventories Apint initiative of the Effective Control Con

Structuring of life cycles stages

- Mix of different inputs, e.g.
 - Rape seeds IP and organic used in oil pressing
 - Different biogas processes used as input to grid
 - Mix of different ethanol pathways used as filling for car
- Modelling of average cases
- Data can be easily disaggregated if singe pathways are of interest
- Change of market situation must be considered in each study using the data

Transport services investigated in this project

- Passenger cars
 - Compressed natural gas
 - Methane 96%
 - Ethanol 5%
 - Methanol 100%
 - Plant oil methyl ester 5%
 - ETBE 15%
 - EURO 3, 4, 5 for petrol and diesel
- Trucks

13

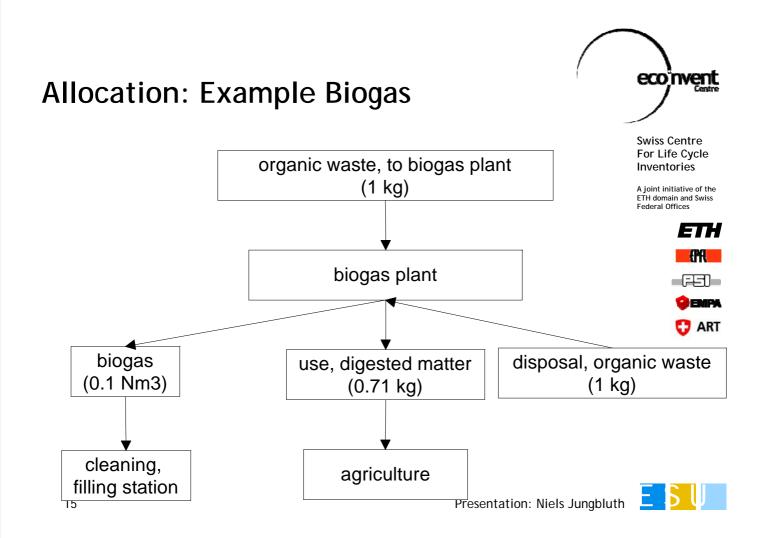
- Rape seed methyl ester 100%

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Niels Jungbluth

Allocation


- Multi-output processes are stored in the database BEFORE allocation
- Input- and output-specific allocation factors, i.e. individual allocation factor allowed per pollutant and input
- Allocation executed after import of dataset into database
 -> calculation of allocated unit processes
 -> matrix becomes invertible
- NO system expansion, NO credits
- All products included: fuel, electricity, heat, material, fertilizer, waste management, fodder, food, etc.
- Cut-off applied for outputs without economic value and wastes for recycling

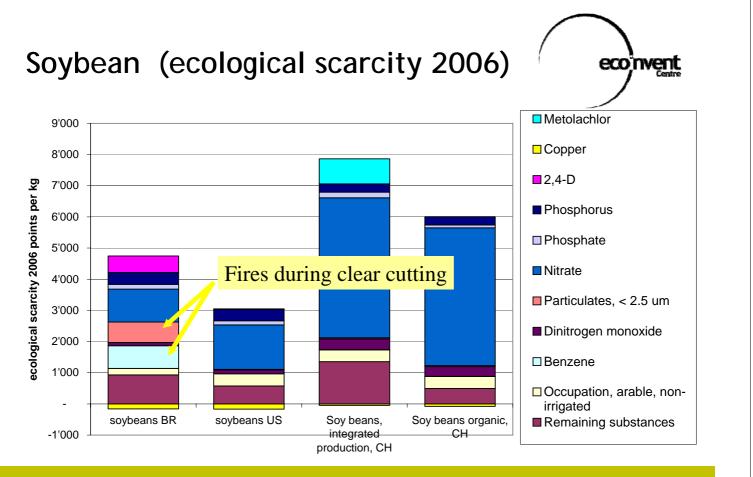
Swiss Centre For Life Cycle Inventories

econvent

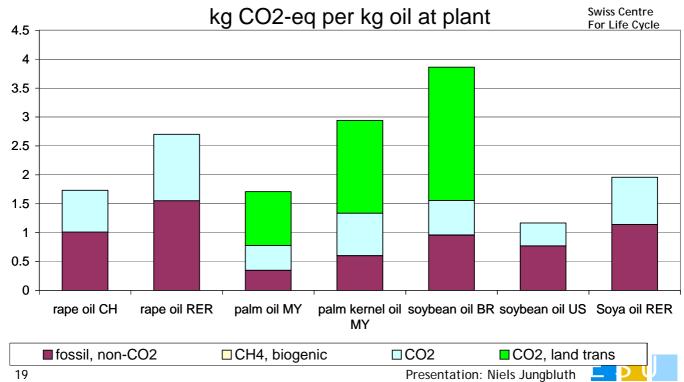
Raw data biogas

Location000CHCHCHCHInfrastructureProcess000Unit00kgNm3kgkgbiogas, from biowaste, at storageCHNm31.00E-1100.00disposal, biowaste, to anaerobic digestionCHkg1.00E+0-100.00-digested matter, application in agricultureCHkg7.12E-1-100.00-heat, natural gas, at boiler condensing modulating >100kWRERMJ5.94E-118.2481.76electricity, low voltage, at gridCHkWh4.00E-218.2481.76disposal, municipal solid waste, 22.9% water, to municipal incinerationCHkg1.00E-218.2481.76diesel, burned in building machineGLOMJ1.80E-2100.00-transport, lorry 16tCHtkm1.50E-2-50.0050.0050.00solid manure loading and spreading, by hydraulic loader and spreaderCHkg1.00E+0-50.0050.00Carbon dioxide, in air-kg5.95E-155.00-45.00Carbon dioxide, biogenic-kg7.05E-118.2681.790.05	Name	Location	Unit	biowaste, to anaerobic digestion	biogas, from biowaste, at storage	disposal, biowaste, to anaerobic digestion	digested matter, application in agriculture
Unit 0 0 kg Nm3 kg kg biogas, from biowaste, at storage CH Nm3 1.00E-1 100.00 - - disposal, biowaste, to anaerobic digestion CH kg 1.00E+0 - 100.00 - digested matter, application in agriculture CH kg 7.12E-1 - - 100.00 heat, natural gas, at boiler condensing modulating >100kW RER MJ 5.94E-1 18.24 81.76 - electricity, low voltage, at grid CH kWh 4.00E-2 18.24 81.76 - disposal, municipal solid waste, 22.9% water, to municipal incineration CH kg 1.00E-2 18.24 81.76 - diesel, burned in building machine GLO MJ 1.80E-2 - 100.00 transport, lorry 16t CH tkm 1.50E-2 - 100.00 solid manure loading and spreading, by hydraulic loader and spreader CH kg 1.00E+0 - 50.00 50.00 Carbon	Location	0	0	СН	СН	СН	СН
biogas, from biowaste, at storageCHNm3 $1.00E-1$ 100.00 disposal, biowaste, to anaerobic digestionCHkg $1.00E+0$ - 100.00 -digested matter, application in agricultureCHkg $7.12E-1$ 100.00 heat, natural gas, at boiler condensing modulating >100kWRERMJ $5.94E-1$ 18.24 81.76 -electricity, low voltage, at gridCHkWh $4.00E-2$ 18.24 81.76 -disposal, municipal solid waste, 22.9% water, to municipal incinerationCHkg $1.00E-2$ 18.24 81.76 -diesel, burned in building machineGLOMJ $1.80E-2$ 100.00transport, lorry 16t solid manure loading and spreading, by hydraulic loader and spreaderCHkg $1.00E+0$ - 50.00 50.00 Carbon dioxide, in air-kg $5.95E-1$ 55.00 - 45.00	InfrastructureProcess	0	0	0	-	-	-
disposal, biowaste, to anaerobic digestionCHkg1.00E+0-100.00-digested matter, application in agricultureCHkg7.12E-1100.00heat, natural gas, at boiler condensing modulating >100kWRERMJ5.94E-118.2481.76-electricity, low voltage, at gridCHkWh4.00E-218.2481.76-disposal, municipal solid waste, 22.9% water, to municipal incinerationCHkg1.00E-218.2481.76-diesel, burned in building machineGLOMJ1.80E-2100.00transport, lorry 16tCHtkm1.50E-2-50.0050.00solid manure loading and spreading, by hydraulic loader and spreaderCHkg1.00E+0-50.0050.00Carbon dioxide, in air-kg5.95E-155.00-45.00	Unit	0	0	kg	Nm3	kg	kg
digested matter, application in agricultureCHkg7.12E-1100.00heat, natural gas, at boiler condensing modulating >100kWRERMJ5.94E-118.2481.76-electricity, low voltage, at gridCHkWh4.00E-218.2481.76-disposal, municipal solid waste, 22.9% water, to municipal incinerationCHkg1.00E-218.2481.76-diesel, burned in building machineGLOMJ1.80E-2100.00transport, lorry 16tCHtkm1.50E-2-50.0050.00solid manure loading and spreading, by hydraulic loader and spreaderCHkg1.00E+0-50.0050.00Carbon dioxide, in air-kg5.95E-155.00-45.0050.00	biogas, from biowaste, at storage	CH	Nm3	1.00E-1	100.00	-	-
heat, natural gas, at boiler condensing modulating >100kWRERMJ5.94E-118.2481.76-electricity, low voltage, at gridCHkWh4.00E-218.2481.76-disposal, municipal solid waste, 22.9% water, to municipal incinerationCHkg1.00E-218.2481.76-diesel, burned in building machineGLOMJ1.80E-2100.00transport, lorry 16tCHtkm1.50E-2-50.0050.00solid manure loading and spreading, by hydraulic loader and spreaderCHkg1.00E+0-50.0050.00Carbon dioxide, in air-kg5.95E-155.00-45.00	disposal, biowaste, to anaerobic digestion	CH	kg	1.00E+0	-	100.00	-
>100kWRERMJ5.94E-118.2481.76-electricity, low voltage, at gridCHkWh4.00E-218.2481.76-disposal, municipal solid waste, 22.9% water, to municipal incinerationCHkg1.00E-218.2481.76-diesel, burned in building machineGLOMJ1.80E-2100.00transport, lorry 16tCHtkm1.50E-2-50.0050.00solid manure loading and spreading, by hydraulic loader and spreaderCHkg1.00E+0-50.0050.00Carbon dioxide, in air-kg5.95E-155.00-45.00	digested matter, application in agriculture	CH	kg	7.12E-1	-	-	100.00
disposal, municipal solid waste, 22.9% water, to municipal incinerationCHkg1.00E-218.2481.76-diesel, burned in building machineGLOMJ1.80E-2100.00transport, lorry 16tCHtkm1.50E-2-50.0050.00solid manure loading and spreading, by hydraulicCHkg1.00E+0-50.0050.00loader and spreader-kg5.95E-155.00-45.00		RER	MJ	5.94E-1	18.24	81.76	-
municipal incinerationCHkg1.00E-218.2481.76-diesel, burned in building machineGLOMJ1.80E-2100.00transport, lorry 16tCHtkm1.50E-2-50.0050.00solid manure loading and spreading, by hydraulic loader and spreaderCHkg1.00E+0-50.0050.00Carbon dioxide, in air-kg5.95E-155.00-45.00	electricity, low voltage, at grid	СН	kWh	4.00E-2	18.24	81.76	-
transport, lorry 16t solid manure loading and spreading, by hydraulic loader and spreaderCH kgtkm1.50E-2 1.00E+0-50.0050.00Carbon dioxide, in air-kg5.95E-155.00-45.00		СН	kg	1.00E-2	18.24	81.76	-
solid manure loading and spreading, by hydraulic loader and spreaderCHkg1.00E+0-50.0050.00Carbon dioxide, in air-kg5.95E-155.00-45.00	diesel, burned in building machine	GLO	MJ	1.80E-2	-	-	100.00
Ioader and spreaderCHkg1.00±+0-50.0050.00Carbon dioxide, in airkg5.95E-155.00-45.00	transport, lorry 16t	CH	tkm	1.50E-2	-	50.00	50.00
		СН	kg	1.00E+0	-	50.00	50.00
Carbon dioxide, biogenic - kg 7.05E-1 18.26 81.79 - 0.05	Carbon dioxide, in air	-	kg	5.95E-1	55.00	-	45.00
	Carbon dioxide, biogenic	-	kg	7.05E-1	18.26	81.79	- 0.05
Methane, biogenic - kg 8.53E-3 18.24 81.76 -	Methane, biogenic	-	kg	8.53E-3	18.24	81.76	-

ΡΨ


econvent

Soybean production and land transformation



Presentation: Niels Jungbluth

Plant oil production

econvent Production of sugar cane -e cle agriculture of the Swiss ТН PA ED-Harvest **MPA** manual/ ART machinery Sugar

/Ethanol production

Sugar production

7.00E-07

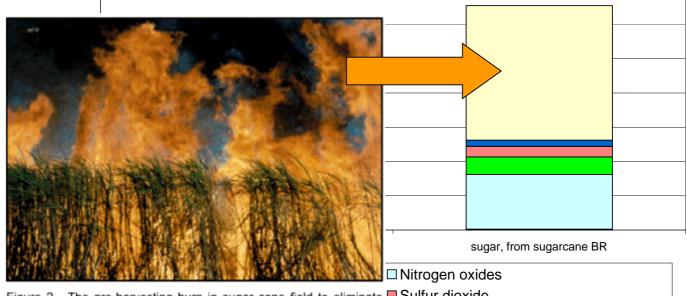
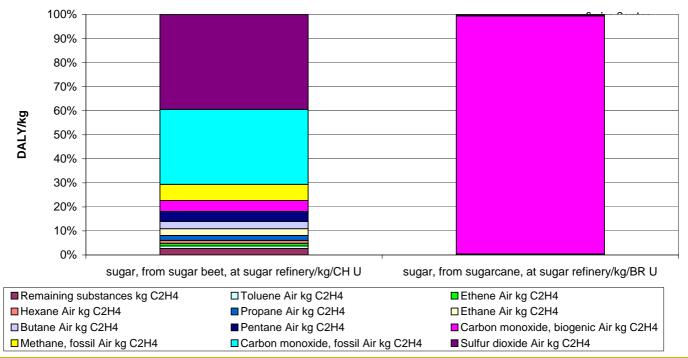
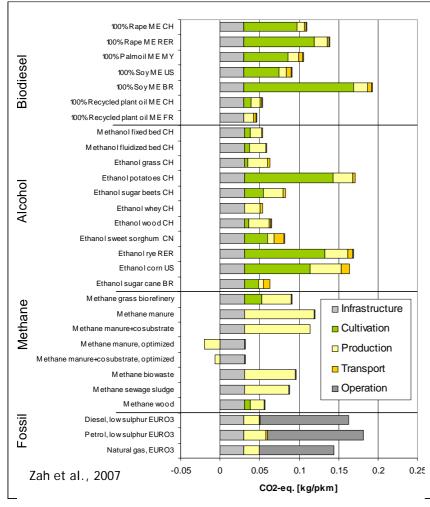
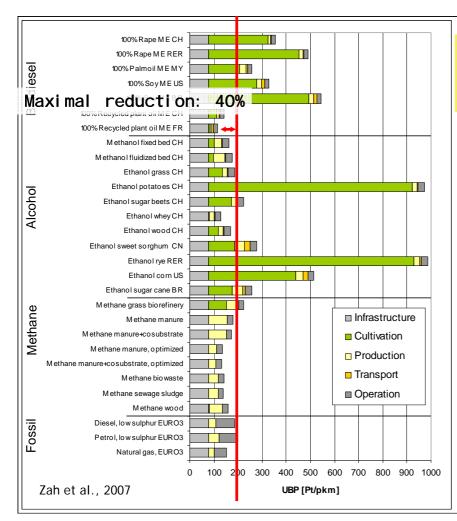



Figure 2 - The pre-harvesting burn in sugar cane field to eliminate Sulfur dioxide most of the trash.

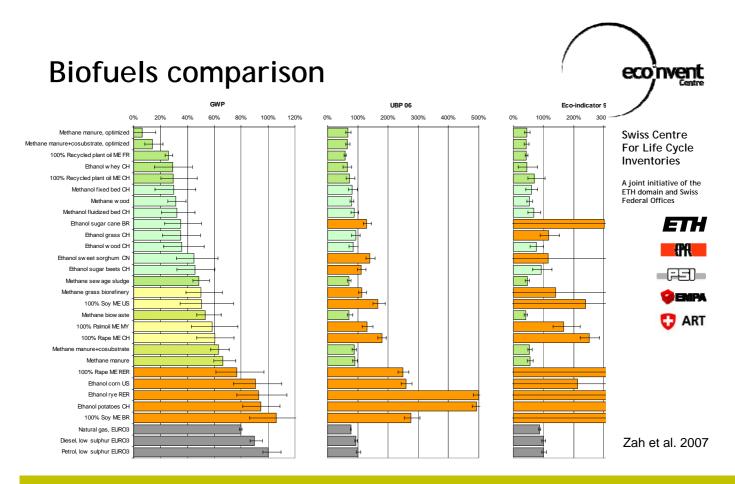

Respiratory effects, inorganic, Eco-indicator 99, (H,A) due to burning of residues

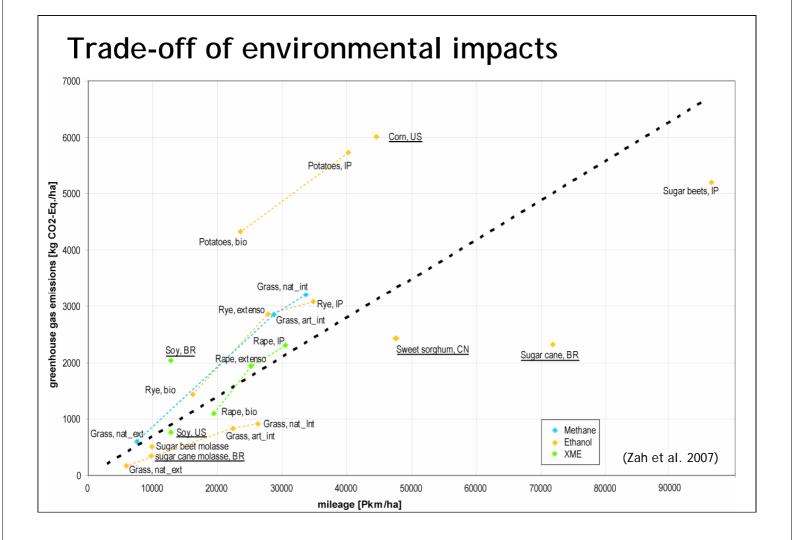
Sugar production


Respiratory effects, organic, Eco-indicator 99, (H,A) due to burning of residues

GWP-Reduction of Biofuels

Conclusions:


- 13 of 26 investigated biofuels reduce the GWP significant (>50%)
- 5 of them are from waste
- Worst biofuel: Brazilian soya oil with more GWP than fossil reference (transformation of rainforest into agriculture)


Environmental impacts (UBP 06)

Conclusion:

- Most important aspect of biofuels: cultivation
- About 40% of environmental impacts of transport services are infrastructure-related
- Maximal reduction has XME from recycled plant oil: 40%
- Or with other words: driving a car with XME from recycled plant oil still cause 60% of environmental impacts.

Tax exemption if 40% lower GWP and not higher environmental impacts than gasoline

Conclusion from biofuels study

- A broad variety of investigated biofuels have a significant GWP-reducing potential
- Overall impact is lower in biofuels from waste. > Step of cultivation is the most important one
- Transport-related impacts can't be neglected
- Many biofuels with agricultural biomass have higher overall impacts than fossil fuels

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Niels Jungbluth

Limits of investigation

- Emerging technologies with status 2005
- Different degree of development status
- No consequential LCA e.g. influence on food and fodder production
- No limits due to potentials of biomass production

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Conclusions for inventory data

- Products show environmental "Achilles' tendon" in different areas
 => Focus of investigation depends on product analysed
- "Biofuels" example:
 - burning of residues
 - CO2 emissions due to land transformation
 - => acknowledge and model regional differences
- ecoinvent data provide the necessary information

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices

Presentation: Niels Jungbluth

29

Conclusions (2)

- Environmental impacts of biofuel pathways are dependent on the raw material
- No good or bad types of products
- Differences of biomass origin, type and processing must be taken into account
- ecoinvent data must be reworked if used in another context
- Data base provides good basis for such assessments

econvent

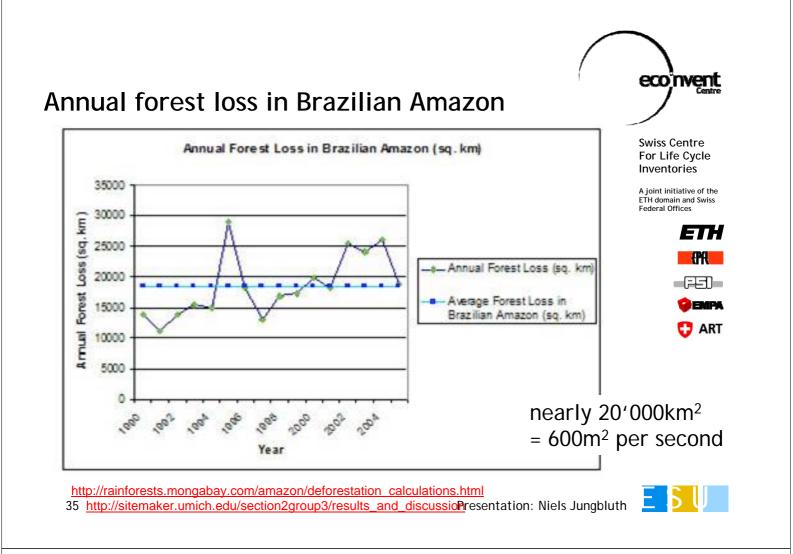
Outlook

31

- Full LCA based on investigated data published in the framework of the project (<u>http://www.esu-</u> <u>services.ch/bioenergy.htm</u>)
- Life cycle inventories of BTL-fuels are published in EcoSpold format in a European project (<u>www.esu-</u> <u>services.ch/renew.htm</u>)
- Ongoing discussion on guidelines for tax exemption will further increase the need for reliable LCI data
- Shift of focus from fuel to fuel consumption

Swiss Centre For Life Cycle Inventories

A joint initiative of the ETH domain and Swiss Federal Offices



Presentation: Niels Jungbluth

GWP is one environmental effect... econvent Swiss Centre For Life Cycle All effects can be aggregated: ... others serious effects are: Inventories eco-indicator 99 A joint initiative of the photochemical oxidation ETH domain and Swiss Federal Offices UBP'06 acidification german: UmweltBelastungsPunkte Ecological Scarcity Point eutrophication english: • -FF)ozone layer depletion • EMPA human toxicity • 🕽 ART fresh water toxicity • marine aquatic toxicity • land competition abiotic depletion Presentation: Niels Jungbluth 33 Increase of agricultural area ecoinvent Swiss Centre For Life Cycle Inventories A joint initiative of the ETH domain and Swiss Federal Offices ETH **EPA** EMPA 🕽 ART

This area was cleared by soybean farmers in Novo Progreso. Brazilian Government figures show that the rate of clearing has increased.

Clear cutting of primary forests

- Agricultural area is increased by clear cutting
- Land transformation leads to CO₂ emissions from soil and biomass
- · Burning of residues with further emissions
- Loss of biodiversity
- CO₂ from land transformation accounts for about 90% of Brazil CO₂ emissions
- Particles from residue burning are an important problem in South-East Asia

For Life Cycle Inventories

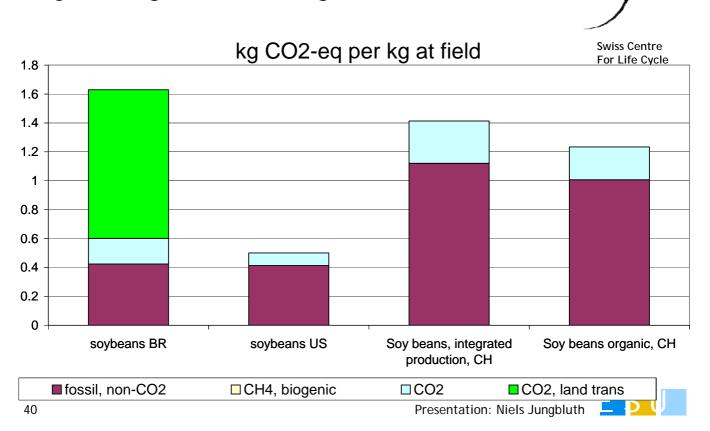
Principle of investigation

- What is the increase in agricultural area for the production in the reference year?
- What is emitted per m² of clear cut land?
- Allocation of emissions between wood and stubbed land
- Stubbed land is the main driver •

38

• New elementary flow "CO₂, land transformation" as used by IPCC for different possibilities of analysis

37			Pre	esentation: Niels J	lungbluth 💶	
Inventory Clear Cut	ting	ļ			ecor	vent Centre
Name	Location	Infrastructu reProcess	Unit	clear-cutting, primary forest	round wood, primary forest, clear-cutting, at forest road	provision, stubbed land
Location InfrastructureProcess Unit				BR 0 ha	BR 0 m3	BR 0 m2
round wood, primary forest, clear-cutting, at forest road	BR	0	m3	5.21E+1	100	-
provision, stubbed land	BR	0	m2	1.00E+4	-	100
Wood, primary forest, standing	-	-	m3	1.82E+2	29	71
Transformation, from tropical rain forest	-	-	m2	1.00E+4	-	100
Transformation, to forest, intensive, clear- cutting	-	-	m2	1.00E+4	-	100
power sawing, without catalytic converter	RER	0	h	1.24E+1	100	-
Carbon dioxide, land transformation	-	-	kg	1.20E+5	-	100
Carbon monoxide, fossil	-	-	kg	7.84E+3	-	100
Methane, fossil	-	-	kg	5.14E+2	-	100



Inventories A joint initiative of the ETH domain and Swiss Federal Offices

Inventory agricultural produ	ct		ecorrvent Centre Swiss Centre For Life Cycle Inventories
Name	Locati on	Unit	soybeans, at farm
Location			BR
InfrastructureProcess			0
Unit			kg
Occupation, arable, non-irrigated		m2a	1.97E+0
Transformation, to arable, non-irrigated		m2	3.93E+0
Transformation, from forest, intensive, clear-cutting	l	m2	6.22E-2
Transformation, from arable, non-irrigated		m2	3.77E+0
Transformation, from shrub land, sclerophyllous		m2	1.03E-1
provision, stubbed land	BR	m2	6.22E-2
39	Presentation: Nie	ls Jungblut	th ESU

Soybean greenhouse gasses

econvent