

ライフサイクルアセスメント 生命週期評估 전 과정 평가 வாழ்க்கை வட்டப் பகுப்பாய்வு ருட்புக்கு வட்டு பகுப்பாய்வு

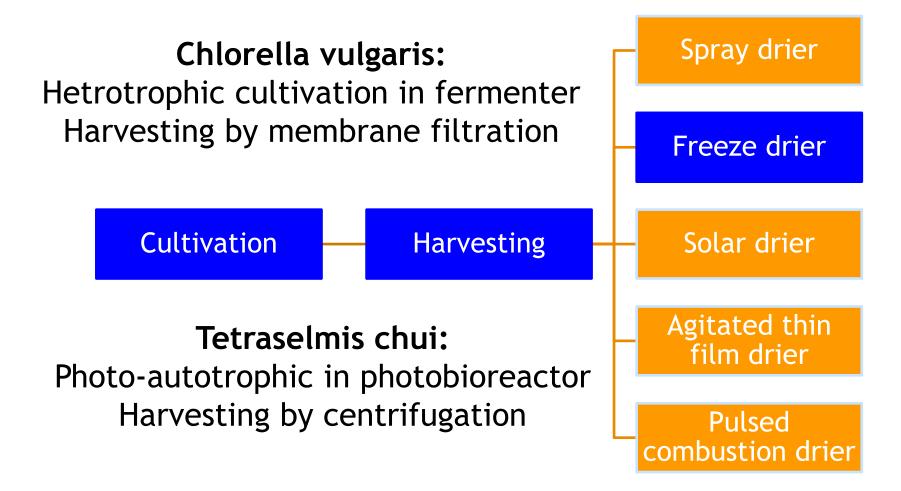
Evaluarea Ciclului de Viață Posuzování Životního Cyklu Penilaian Daur Hidup Lífsferilsgreining Levenscyclusanalyse Livscyklusvurdering

Life cycle assessment of microalgae as protein source : comparison of drying technologies

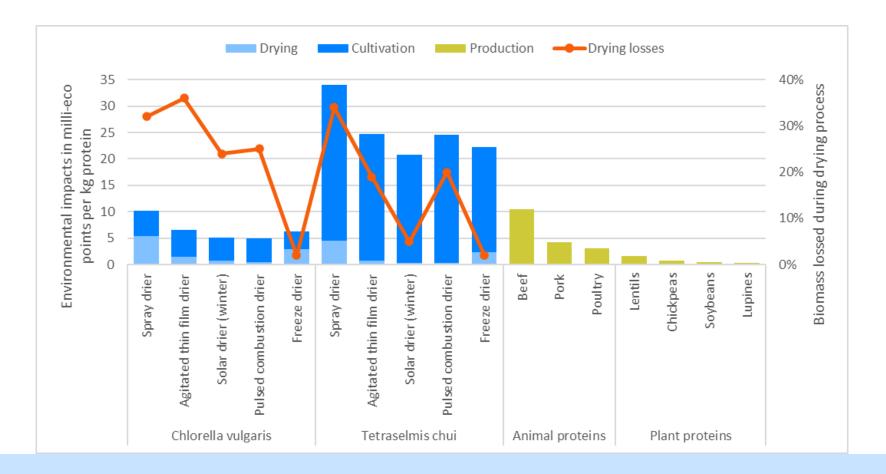
Maresa Bussa, Niels Jungbluth ESU-services GmbH, Schaffhausen

Introduction

- Microalgae have been recognized as promising protein source
- Previous life cycle assessment studies have shown disadvantageous results when compared the other protein sources
- Main reason: high energy demand of the production processes
- Research question: Can innovative drying technologies help microalgal protein to compete with other protein sources?
- Funding: European Commission, Horizon 2020, <u>https://www.pro-future.eu/</u>


Methodology and Data

- Studied species:
 - Chlorella vulagris (32% protein), heterotrophic cultivation
 - Tetreaselmis chui (40% protein), photo-autotrophic cultivation
- LCI includes: cultivation, harvesting and drying
- LCIA method: European Footprint 3.0
- Background data: ecoinvent 3.8 cut-off and ESU food database
- Functional unit: dry powder containing 1 kg protein


Product system

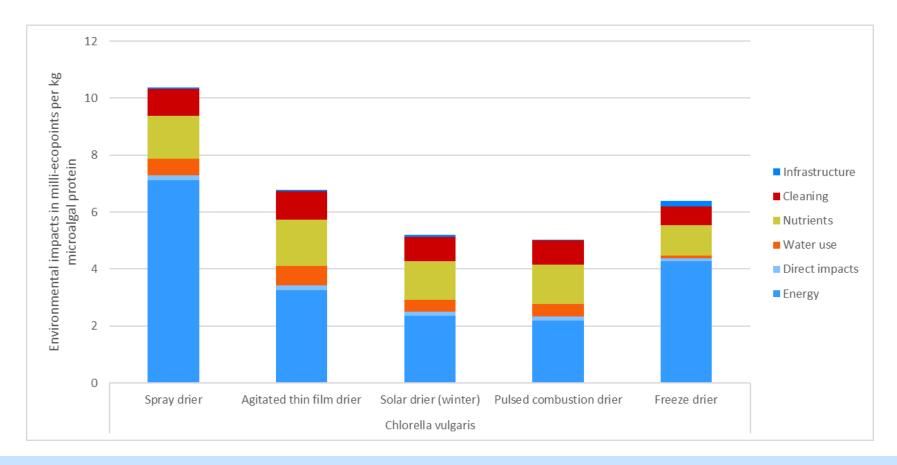
Environmental impacts per kg protein

> Microalgae not competitive with plant proteins, Chlorella comparable to animal proteins

> Drying yield most important parameter

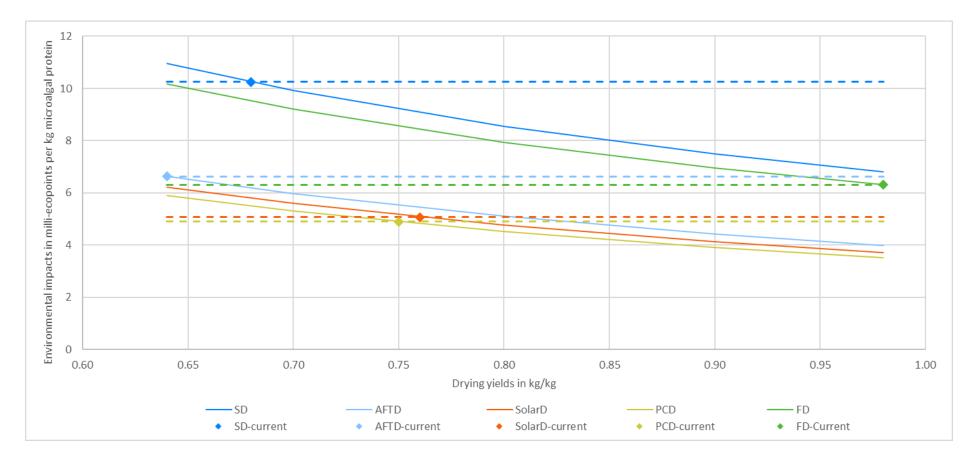
Midpoint results: Chlorella vulgaris

					Agitated thin		Pulsed com-	
Impact category	Pork	Poultry	Beef	Spray drier	film drier	Solar drier	bustion drier	Freeze drier
Climate change	6%	5%	24%	100%	59%	45%	45%	62%
Ozone depletion	2%	2%	2%	100%	74%	59%	65%	64%
Ionising radiation	5%	5%	4%	100%	49%	35%	31%	60%
Photochemical ozone formation	9%	7%	14%	100%	66%	51%	49%	62%
Particulate matter	30%	22%	100%	81%	65%	53%	51%	54%
Human toxicity, non-cancer	12%	8%	-20%	100%	72%	57%	54%	63%
Human toxicity, cancer	7%	5%	4%	86%	68%	49%	46%	100%
Acidification	24%	18%	80%	100%	66%	52%	49%	63%
Eutrophication, freshwater	2%	2%	3%	100%	57%	41%	37%	56%
Eutrophication, marine	24%	17%	25%	100%	93%	65%	65%	44%
Eutrophication, terrestrial	29%	22%	100%	58%	45%	36%	35%	37%
Ecotoxicity, freshwater	7%	5%	7%	100%	80%	63%	61%	61%
Land use	41%	32%	100%	65%	53%	46%	42%	43%
Water use	32%	20%	34%	100%	71%	56%	54%	64%
Resource use, fossils	3%	3%	3%	100%	61%	46%	46%	62%
Resource use, minerals and metals	2%	1%	3%	100%	87%	74%	69%	70%


> Climate change impacts worse than beef, few indicators show lower results than beef

> Land use impacts for new drying technologies comparable to pork

Hotspot analysis: Chlorella vulgaris



- Electricity use is most important driver
- > Nutrition (glucose) and cleaning (propane) are important as well

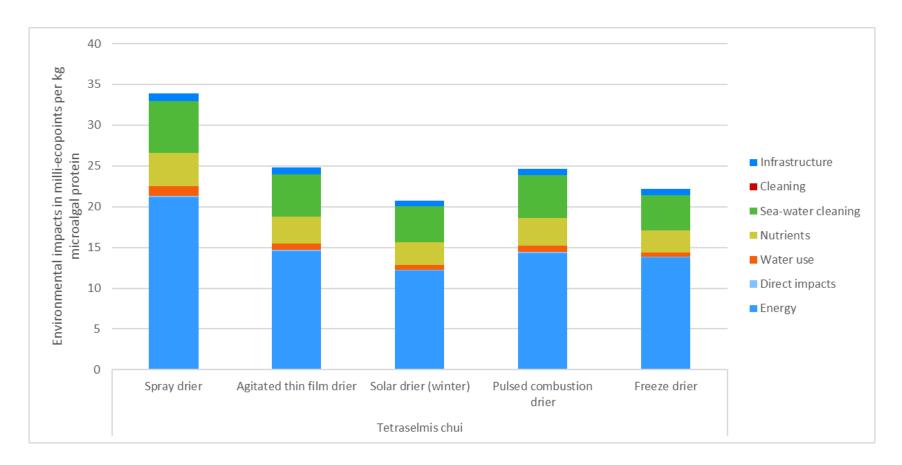
Sensitivity analysis: Chlorella vulgaris

> Reduction to approximately 4 milli-ecopoints per kg protein possible

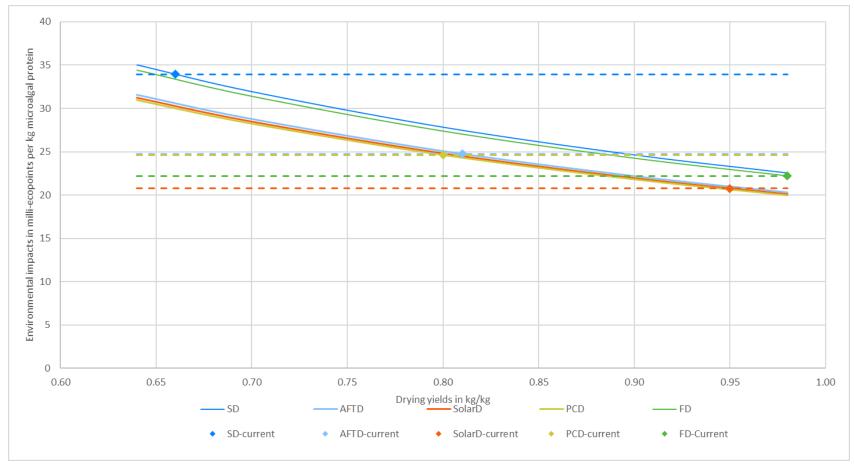
> Reminder: Animal protein 3-10 milli-ecopoints, plant protein 0.3-1.6 milli-ecopoints per kg protein

Midpoint results: Tetraselmis chui

					Agitated thin		Pulsed com-	
Impact category	Pork	Poultry	Beef	Spray drier	film drier	Solar drier	bustion drier	Freeze drier
Climate change	2%	1%	7%	100%	73%	61%	73%	66%
Ozone depletion	0%	0%	0%	100%	77%	65%	78%	66%
Ionising radiation	2%	2%	1%	100%	70%	58%	68%	65%
Photochemical ozone formation	3%	2%	4%	100%	73%	62%	73%	66%
Particulate matter	8%	6%	26%	100%	78%	66%	78%	67%
Human toxicity, non-cancer	3%	2%	-5%	100%	75%	63%	75%	66%
Human toxicity, cancer	2%	2%	1%	100%	75%	62%	74%	78%
Acidification	5%	4%	18%	100%	76%	64%	75%	66%
Eutrophication, freshwater	1%	1%	1%	100%	70%	58%	68%	64%
Eutrophication, marine	12%	9%	13%	100%	70%	55%	70%	56%
Eutrophication, terrestrial	22%	16%	75%	100%	73%	61%	73%	65%
Ecotoxicity, freshwater	2%	2%	2%	100%	75%	62%	74%	65%
Land use	26%	20%	62%	100%	75%	64%	75%	67%
Water use	5%	3%	5%	100%	78%	66%	78%	67%
Resource use, fossils	1%	1%	1%	100%	71%	60%	71%	65%
Resource use, minerals and metals	0%	0%	1%	100%	78%	67%	78%	67%


> Climate change impacts around one order of magnitude higher than for beef

> Lower results for terrestrial eutrophication when compared to beef


Hotspot analysis: Tetraselmis chui

- > Energy use is most important driver
- > Sea-water cleaning (sodium nitrate and thiosulfate) and nutrition (CO_2) are important as well

Sensitivity analysis: Tetraselmis chui

> Reduction to approximately 20 milli-ecopoints per kg protein possible

> Reminder: Animal protein 3-10 milli-ecopoints, plant protein 0.3-1.6 milli-ecopoints per kg protein

Conclusion

- Innovative drying technologies can reduce the environmental impacts of microalgal protein for Chlorella vulgaris to an order of magnitude comparable to animal protein
- Drying yield has the highest influence on the result of the drying technologies
- For both species measures should be tested to reduce the electricity consumption of the cultivation stage.
- Nutrient-rich waste streams should be evaluated as alternative to fertilizers/glucose..

Copyright notice

All rights reserved. The contents of this presentation (a. o. texts, graphics, photos, logos etc.) and the presentation itself are protected by copyright. They have been prepared by ESU-services Ltd.. Any distribution or presentation of the content is prohibited without prior written consent by ESU-services Ltd.. Without the written authorization by ESU-services Ltd. this document and/or parts thereof must not be distributed, modified, published, translated or reproduced, neither in form of photocopies, microfilming nor other - especially electronic - processes. This provision also covers the inclusion into or the evaluation by databases. Contraventions will entail legal prosecution.

In case of any questions, please contact:

Maresa Bussa ESU-services Ltd. - fair consulting in sustainability Vorstadt 10 CH-8200 Schaffhausen <u>https://www.esu-services.ch</u> bussa@esu-services.ch

© Copyright ESU-services Ltd. 23/04/2024

https://www.esu-services.ch