

Environmental impact assessment for the European food industry

LCA of food and drink products

Geneviève Doublet, Niels Jungbluth - ESU-services Ltd. Gyða Mjöll Ingólfsdóttir, Eva Yngvadóttir - EFLA

What is Life Cycle Assessment

Standard ISO 14040/44

Example

1. Goal and scope definition

- Functional unit of product
- System boundaries

1 litre of fresh orange juice

Up to packaging process (PET bottle)

2. Inventory analysis

- Use of energy, raw materials, resources
- Emissions

Questionnaire sent to a Spanish company Orange cultivation, orange pressing...

3. Impact Assessment

 Inventory data are converted into potential environmental impacts 11 impact assessment methods (defined in Work package 1)

4. Interpretation

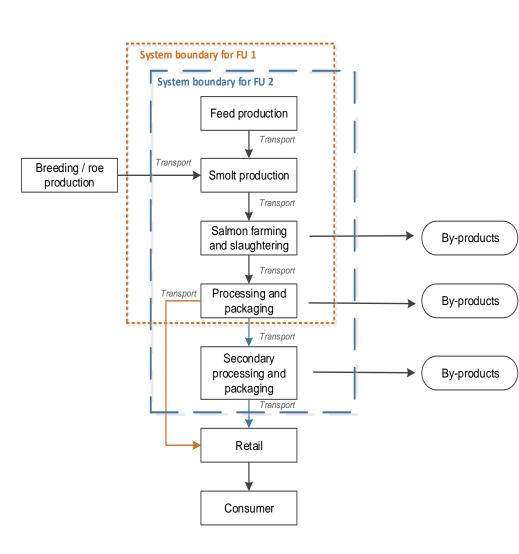
- What are the main contributors?
- Needs and opportunities

Orange cultivation and packaging are the main contributors
Benchmark with other juice producers

Impact Assessment Methods

Impact category	Impact assessment method	Indicator unit
Climate change (GWP)	Bern Model – IPCC (Solomon, 2007)	kg CO ₂ -eq
Eutrophication (EP) terrestrial	Accumulated Exceedance (Seppälä et al., 2006, Posch et al., 2008)	Terrestrial: molc N-eq
Eutrophication (EP) freshwater	. EUTREND Model (Goedkoop et al., 2009)	kg P-eq
Eutrophication (EP) marine		kg N-eq
Acidification	Accumulated Exceedance (Seppälä et al., 2006, Posch et al., 2008)	molc H+-eq
Human toxicity cancer effect		CTUh (Comparative Toxic unit for humans)
Human toxicity non-cancer effects	USEtox Model (Rosenbaum et al., 2008)	
Ecotoxicity		CTU _e (Comparative Toxic Unit for ecosystems)
Land use	Soil organic matter model (Milà i Canals 2007)	kg C deficit
Abiotic resource depletion	CML 2002 (Guinée et al., 2002)	kg antimony (Sb)-eq
Water depletion	Ecological scarcity model (Frischknecht et al., 2009)	European m³ water-eq

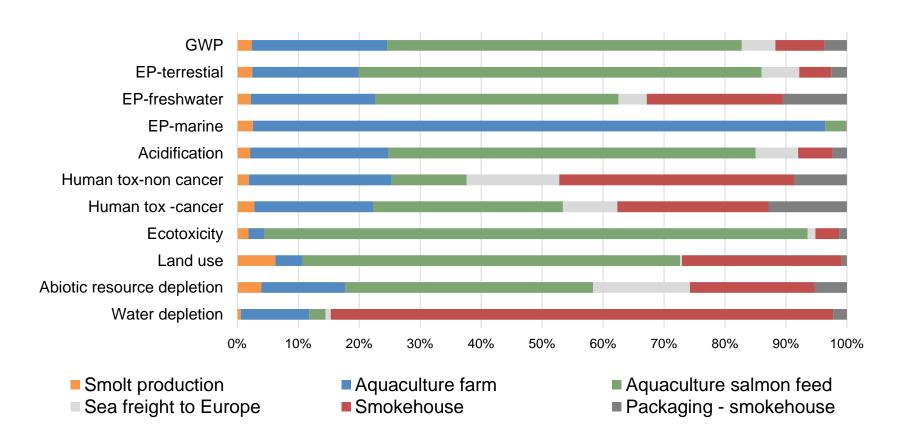
LCA of aquaculture salmon



Goal and scope

- Functional unit 11 kg fresh salmon head on gutted
- Functional unit 21 kg smoked salmon fillets

2. Inventory


- Icelandic producer
 - Smolt production
 - Aquaculture salmon farm
- French producer
 - Smokehouse

LCA of aquaculture salmon

3. Impact assessment of 1 kg smoked salmon fillets

GWP: Global Warming Potential

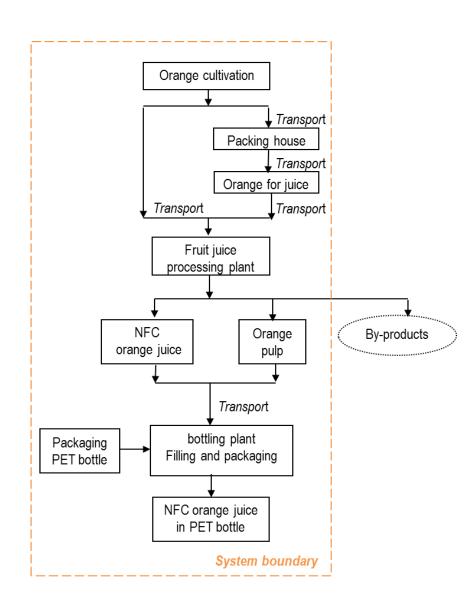
EP: Eutrophication

LCA of aquaculture salmon

4. Interpretation

- Production of aquaculture salmon feed main contributor in 7 of the 11 assessed impact categories
 - Fuel use, fertilisers, pesticides
- Nutrient pollution main contributor to marine eutrophication
 - Uneaten feed, faeces and dead fish
- Smokehouse operation contributes most to human toxicity and water depletion
- Benchmarking:
 - 5.0 kg CO₂-eq/kg smoked salmon fillet
 - 2.7 kg CO₂-eq/kg salmon, head on gutted

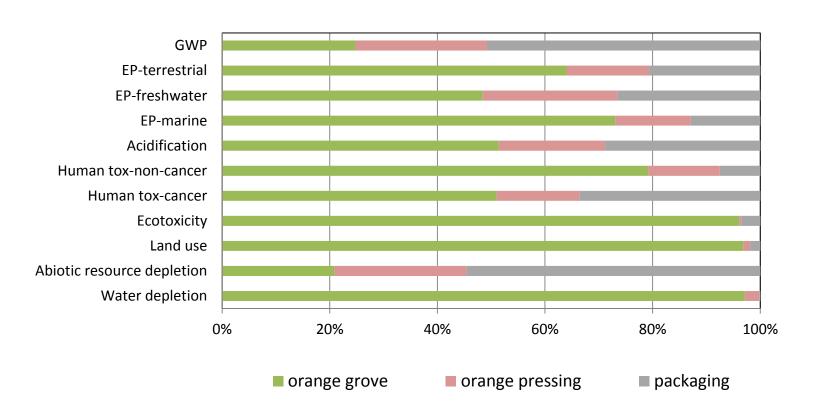
LCA of NFC Orange juice



1. Goal and scope

1 litre NFC Orange juice
 Not From Concentrate

2. Inventory analysis


- Spanish Producer
 - Orange cultivation
 - Orange juice

LCA of NFC orange juice

3. Impact assessment of one litre NFC orange juice

GWP: Global Warming Potential

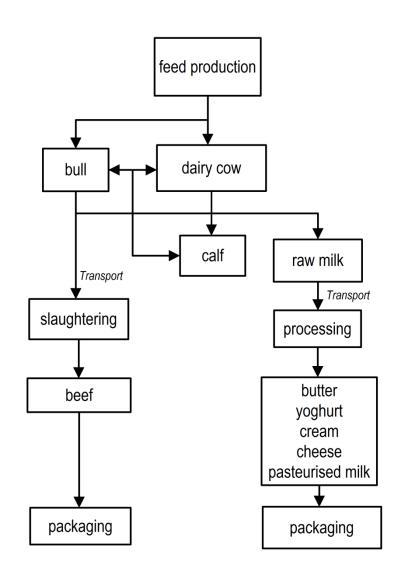
EP: Eutrophication

LCA of NFC orange juice

4. Interpretation

- Packaging more than 50% to GWP and Abiotic resource depletion
 - PET material and bottle production
- Orange cultivation main contributor for other impact categories
 - Land use, fertilisers, energy use for irrigation
- Benchmarking: 0.7 kg CO2-eq/litre orange juice
 - Low value compared to literature data due to fertirrigation

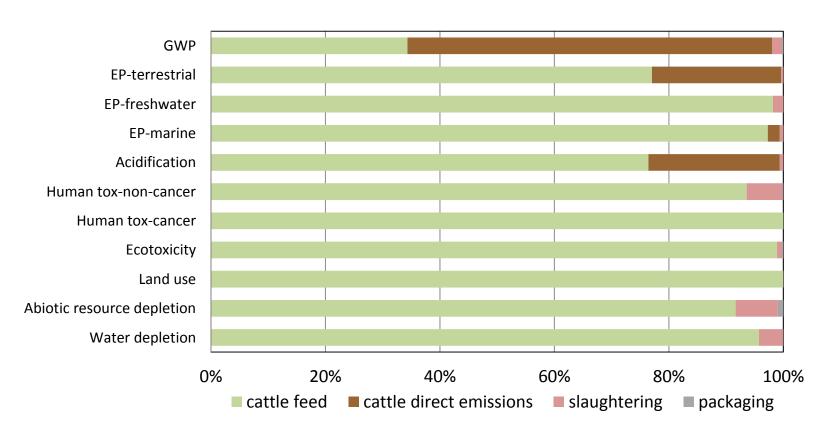
LCA of Beef and dairy products



1. Goal and scope

- Dairy farm in Romania
- Feed production at farm

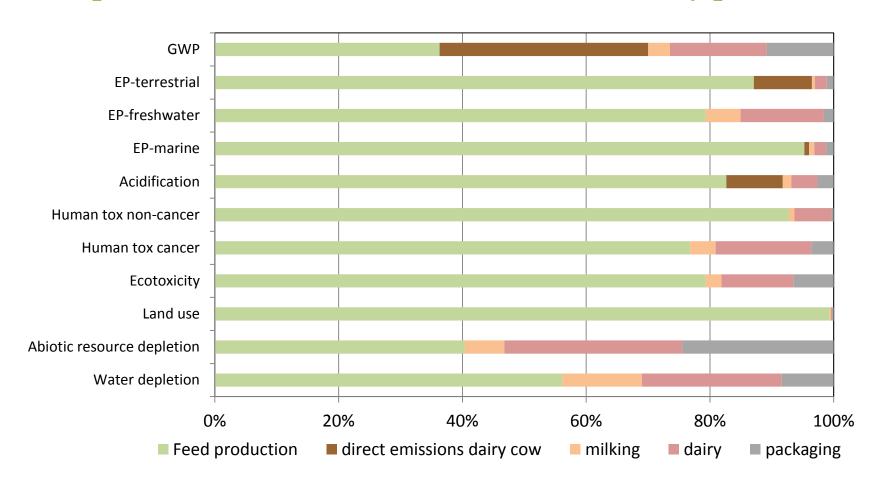
2. Inventory analysis


- Romania
 - Dairy farm
 - Feed production
 - Slaughtering
 - Milk processing

LCA of beef and dairy products

3. Impact assessment of 1 kg beef at slaughterhouse

GWP: Global Warming Potential


EP: Eutrophication

cattle: cull dairy cow and bulls

LCA of beef and dairy products

3. Impact assessment of 1 litre whole milk at dairy plant

GWP: Global Warming Potential

EP: Eutrophication

LCA of beef and dairy products

4. Interpretation

- Main contributors:
 - Feed cultivation main contributor
 - Land use, fertilisers, manure, energy use for tractors
 - Cattle husbandry: methane emissions
 - Dairy: energy use for dairy products
- Benchmarking:
 - 33 kg CO2-eq/kg beef
 - 1.9 kg CO2-eq/l pasteurised milk

LCA of food and drink

What is the aim of these LCA?

Identify essential input data

- Similarities:
 - Impacts of feed production: pesticides, fertilisers, land use, energy use
 - Impacts of animal husbandry: emissions
 - Processing into food for human consumption: energy and water use, packaging

Propose key environmental performance indicators (KEPIs)