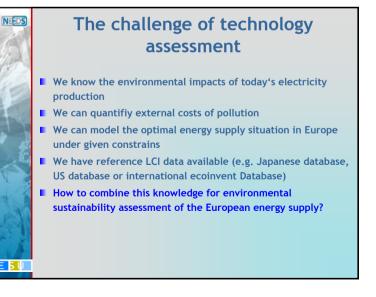
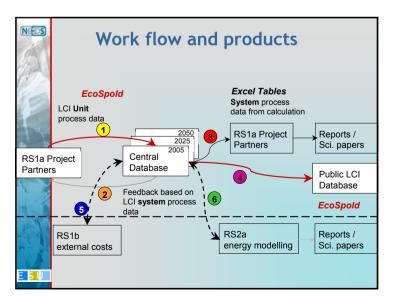

SIXTH FRAMEWORK PROGRAMME

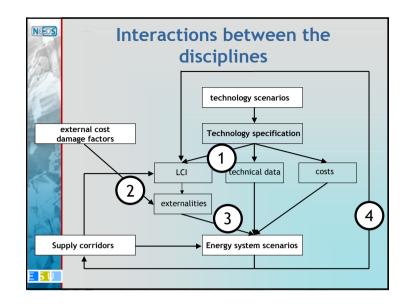
Life cycle based approaches for the assessment of innovative energy technologies

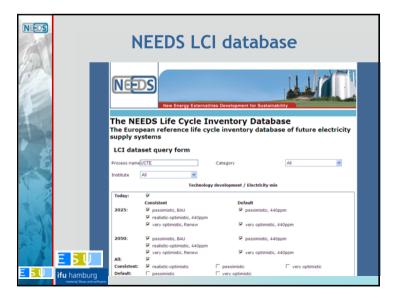
Rolf Frischknecht¹ ¹ ESU-services Ltd., Uster, Switzerland


External Costs of Energy Technologies Brussels, February 17, 2009

Key findings Life cycle thinking is indispensible in energy policy Technology development in LCA background matters situations knowledge


NEEDS


- Energy policy and environmental sustainability assessment should consider possible future
- The NEEDS LCI project results provides relevant
- Transparent unit process LCI databases are one important prerequisite to provide policy relevant answers



)	Goal of the NEEDS-I	Project
	external) - of energy policies and - of future energy systems - at the level of individual countries and - at the level of individual countries - at the level of	ication of external based on Life cycle ories (LCI) ario families: less as Usual, pm CO ₂ , wables and Energy ncy horizons: 2025, 2050
and	- for the enlarged EU Extern countri	al costs per group of les

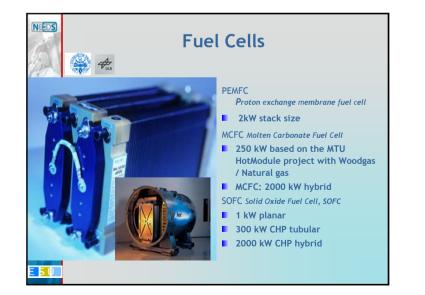
	Your search results: (11 matches) HTML = View dataset in browser, XLS = Download dataset als Excel file, XML	= Dewnload dataset as XML
	Process name: electricity, at offshore wind park 752MW Scenario: 2025, pessimistic, 440ppm Unit: kWh, Location: DK	HTML XLS XML
	Process name: electricity, at offshore wind park 752MV Scenario: 2025, pessimistic, BAU Unit: kWh, Location: DK	HTML I XLS I XML
20	Process name: electricity, at offshore wind park 1068MW Scenario: 2025, realistic-optimistic, 440ppm Unit: kWh, Location: DK	HTML FXLS FXML
1º	Process name: electricity, at offshore wind park 1332MW Scenario: 2025, very optimistic, 440ppm Unit: kWh, Location: DK	HTML I XLS I XML
9	Process name: electricity, at offshore wind park 1332MW Scenario: 2025, very optimistic, Renew Unit: kWh, Location: DK	HTML I XLS I XML
1	Process name: electricity, at offshore wind park 1440MW Scenario: 2050, pessimistic, 440ppm Unit: KWh, Location: DK	HTML XLS XML
1	Process name: electricity, at offshore wind park 1440MW Scenario: 2050, pessimistic, BAU Unit: kWh, Location: DK	HTML XLS XML
28	Process name: electricity, at offshore wind park 1944MW Scenario: 2050, realistic-optimistic, 440ppm Unit: KWh, Location: DK	HTML I XLS I XML
	Process name: electricity, at offshore wind park 2496MW Scenario: 2050, very optimistic, 440ppm Unit: kWh, Location: DK	HTML I XLS I XML
	Process name: electricity, at offshore wind park 2496MW Scenario: 2050, very optimistic, Renew Unit: kWh, Location: DK	HTML I XLS I XML

NEE Flow	EcoSpolo						1kWb1
Exchar				lar trough, DNI200			
Erom Na				al, at solar trough, DN			
Number	Name	Location	Infra	Mean value	Unit	Uncertainty type	SD95%
resource		Location		The art failed	0 m	circularity type	00000
157	Energy, gross calorific value, in biomass		No	8.84504e-3	MJ		
56	Peat, in ground		No	9.07355e-7	kg		
47	Wood, hard, standing		No	1.19424e-7	m3		
154	Wood, soft, standing		No	7.89504e-7	m3		
31	Wood, unspecified, standing		No	1.37783e-11	m3		
resource	/in air						
37	Carbon dioxide, in air		No	7.88507e-4	kg		
61	Energy, kinetic, flow, in wind		No	7.36541e-4	MJ		
147	Energy, solar		No	2.44900e1	MJ		
resource	/in ground						
75	Aluminium, 24% in bauxite, 11% in crude ore, in ground		No	1.12492e-5	kg		
32	Anhydrite, in ground		No	2.24519e-8	kg		
88	Barite, 15% in crude ore, in ground		No	1.05408e-5			
158	Basalt, in Boden		No	5.09885e-5	kg		
139	Borax, in ground		No	2.19401e-7			
101	Calcite, in ground		No	3.59639e-3			
97	Chromium, 25.5 in chromite, 11.6% in crude ore, in ground		No	3.948106-5			
51	Chrysotile, in ground		No	4.54850e-10			
140	Cinnabar, in ground		No	3.63924e-11	1.00		
44	Clay, bentonite, in ground		No	5.14355e-5			
15	Clay, unspecified, in ground		No	1.07401e-3	kg		

EcoSpold Files: Meta information electricity, solar thermal, at solar trough, DNI2000, with storage, 46MW, MA, [RV rmation electricity, solar thermal, at solar trough, DNI2000, with storage, 46MW, MA, [RV rmation electricity, solar thermal, at solar trough, DNI2000, with storage, 46MW, MA, [RV rmation

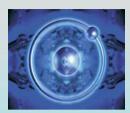
NEEDS

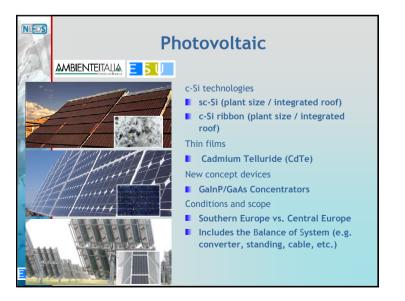
Reference function	electricity, solar thermal, at solar trough, DNI2000, with storage, 46MW, MA, [kWh
Dataset relates to product	Yes
Name	electricity, solar thermal, at solar trough, DNI2000, with storage, 46MW
Local name	Strom, Parabolspiegel, ab Kraftwerk, DNI2000, mit Speicher, 46MW
Infrastructure process	No
Amount	1
Unit	kWh
Category	solar thermal systems
Subcategory	power plants
Local category	Solarthermie
Local subcategory	Kraftwerke
Included processes	Production of solar electricity by a parabolic trough (Andasol I), 46 MW, including collector, building, conventional parts, steamturbine, dismantling and operation materials
Infrastructure included	Yes
Synonyms	0
Geography	electricity, solar thermal, at solar trough, DNI2000, with storage, 46MW, MA, [kWh
Location	MA
Text	South Spain. Guadix. DNI: 2000 kWh/(m2*a)
Technology	electricity, solar thermal, at solar trough, DNI2000, with storage, 46MW, MA, [kWh
Text	Best available technique according to validated and revised data from Lechon 2006 (orginial data from company)
Time period	electricity, solar thermal, at solar trough, DNI2000, with storage, 46MW, MA, [kWh
Data valid for entire period	Yes
Text	Time of publications.
Start year	2007


Advanced Nuclear

Next generation nuclear power:

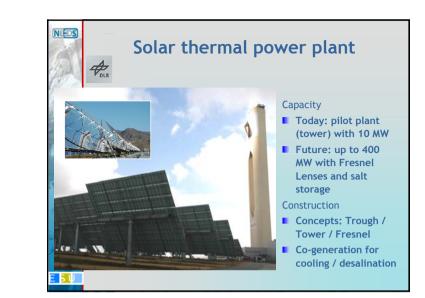
- Nuclear Power Plant of the 3th generation: European Pressurized Reactor (EPR) (1000 MW)
- Nuclear Power Plant of the 4th generation: Sodium cooled fast breeding Reactor (1450 MW) with recycling of Plutonium

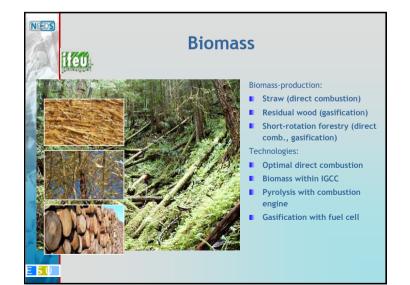


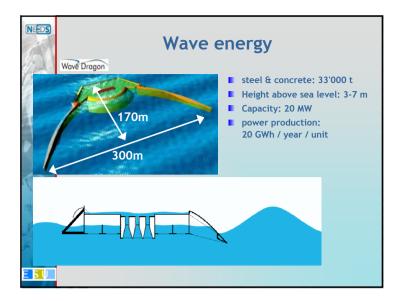

Hydrogen

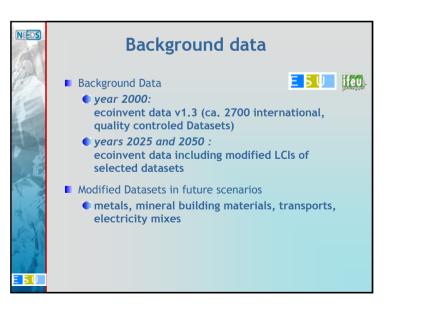
Promoting Hydrogen in Iceland

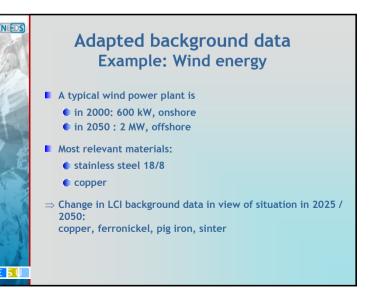
- Designed for mobile and remote island electricity generation
- Compressed gaseous hydrogen at hydrogen fuelling station by
- Including materials needed for production, construction, operational and disposal processes

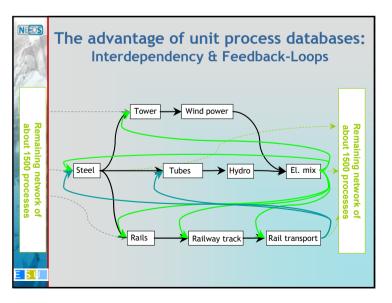


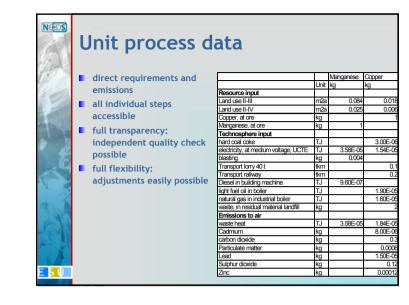


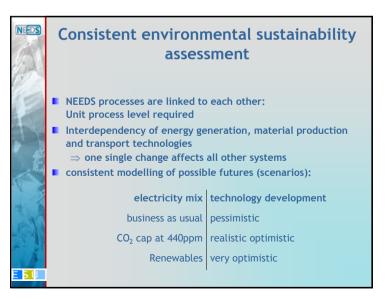


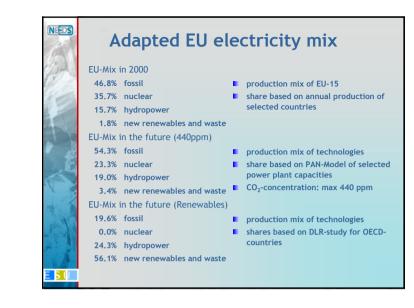


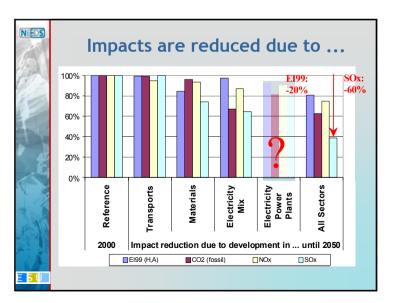


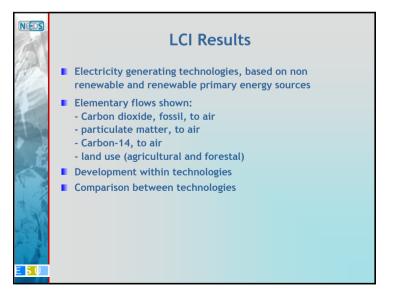


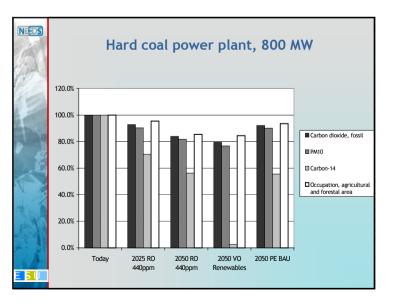


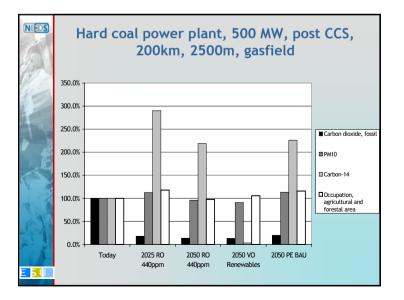


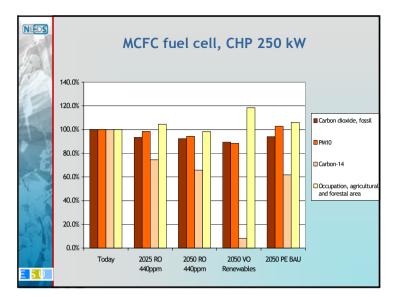

C	Cradle to gate	(rolled-up) c		
				Manganese	Copper
		Deserver	Unit	kg	kg
	cumulative emissions and	Resources	m2a	0 491	0.2
-		Land use Benthos II-III	m2a		0.05
	resource consumptions	Land use Benthos II-III	m2a		0.02
-	<i>(</i> (()) () ()(Land use III-IV	m2a		0.02
	"all inclusive" data:	Land use IV-IV	m2a	1.80E-05	0.001
	(impacts due to resource	Wood	t	1.57E-05	1.01E
	(impacts due to resource	Potential energy water	TJ	7.11E-06	3.49E
	extraction, refining,	Lignite	ka	1.61	0.1
	· • • • • •	Hard coal	kg	1.27	0.1
	shipping, product	Natural gas	Nm3	0.22	0.5
1	manufacture, transports)	Crude oil	t	0.000318	0.0006
	manufacture, transports)	Uranium	kg	0.000109	
	intrancharonti	Water Wasser	kg	3.77E+04	1.82E+
	intransparent:	Limestone	kg	0.0313	0.0
	no adjustments possible	Gravel	kg	0.0744	0
	no adjustinents possible	Iron	kg	0.0145	
	matter of belief:	Copper	kg	0.00116	
		Emissions to air		1	
	no independent quality	Waste heat	TJ	0.000106	
		Carbon dioxide	kg	5.1054	5.21
	check possible	Sulphur dioxide	kg	0.0305	
		Nitrogen oxides	kg	0.00974	0.0
		Methane	kg	0.00941	0.01
		BTEX-aromatics	kg	0.00307 5.42E-05	0.006
		B I EX-aromatics Benzo(a)Pvrene	kg	5.42E-05 3.21E-09	5.52E 8.45E
		Radon-222 (including Radium-226)	kg kBa	6.01E+03	0.40E
		Emissions to water	KBQ	0.01E+03	2./9E1
		Chlorides	ka	0.0219	0.02
		Subhates	kg	0.0219	0.02
		Ammonio	lkg	4 000 00	

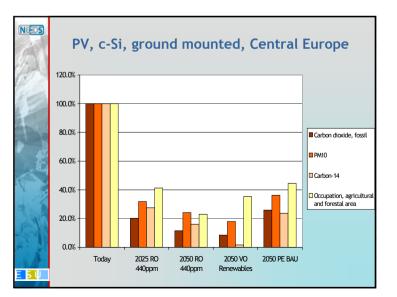





NEEDS	future off-shore wind technologie			
The second		2050		
F	'pessimistic'	 - 16 MW turbine, guyed foundation - Carbon fibre tower - 75% carbon fibre + 25% natural fibre blades 		
		- Gearbox upscale		
C.	'realistic- optimistic'	 24 MW turbine, floating foundation Gearless turbine Carbon fibre lattice tower 		
The second		- Co-existence with water turbine/wave generator; shared cables to shore		
	'very optimistic'	 32 MW turbine Hydro-windturbine Off-shore 'energy landscape' 		
ЕÞΨ		Source: NEEDS, DONG Ener	gy	






4	Marra	Time Technolom olectricity mix				
	Name	Time	Technology development	electricity mix		
	TODAY	2000	current state	current European electricity mix (UCTE)		
6	2025 RO, 440ppm	2025	realistic optimistic	440ppm CO ₂ cap		
6	2050 RO, 440ppm	2050	realistic optimistic	440ppm CO ₂ cap		
	2050 VO, RENEW	2050	very optimistic	increased renewables and energy efficiency		
	2050 PE, BAU	2050	pessimistic	business as usual		

