Environmental Labelling of Green Electricity with Key Parameter Models

Dr. Niels Jungbluth Dr. Rolf Frischknecht ESU-services, Uster, Switzerland

International Conference on Ecobalance and LCA Indira Gandhi Institute of Development Research February 13-15, 2002, Mumbai

Problem Setting

- Opening of electricity markets in Europe
- Consumers want to buy environmentally friendly electricity with good ecological criteria
- How can LCA contribute to this kind of question?

Contents

- Labelling scheme for *naturemade star*
- Rule of LCA and an example
- Consistent system boundaries and other challenges
- Conclusions and outlook

Criteria for Ecolabelling

Global Criterion

- One threshold for all renewable energy resources
- Detailed LCA per type of power plant
- Identification of key parameters
- Modelling in Excel for checking the threshold

Detailed LCA for Electricity Production from Wood

- Detailed inventory for three Swiss plants
- Cradle to grave
- Assessment with Eco-indicator 99 and other impact assessment methods
- Analysis of most important stages as entries to the inventory

Contribution of different Stages

www.esu-services.ch

Variation of Particle Emissions

Variation in Efficiency

Key Parameter Model

Key parameter model for wood

Name of facility		WKK L	engwil				
Impact assessment method	EI'99-aggregated, Hierarchist						
Type of plant	Co-generation wood combustion	n with multi-cycl	-				
Data input							
Wood chips from forest		t/a	25560				
Wood chips from wood proce	essing	t/a	0				
Wood chips from wood wast	es	t/a	0				
Transport distance		km	0				
Emissions to air			10.0				
Particle		mg/Nm [°]	40.0				
NOx as NO2		mg/Nm [°]	100.0				
Lead (only for waste wood)		mg/Nm ³	1.0				
Cadmium (only for waste wo	ood)	mg/Nm ³	0.05				
Zinc (only for waste wood)		mg/Nm ³	0.5				
Outputs							
Ash for waste management	t/a	255.6					
Type of waste management	land fill		-				
Gross electricity production		kWh/a	1.31E+07				
Heat used		kWh/a	9.19E+07				
Results							
			pro kWh				
WKK Lengwil per year		El-99-points/a	1.74E+05				
WKK Lengwil / kWh		EI-99- points/kWh	1.33E-02				
Threshold Eco electricity Sw	vitzerland	EI-99- points/KWh	1.40E-02	95.0%			
Eco electricity criterio	n fulfilled						

Niels Jungbluth, Rolf Frischknecht, ESU-services, Uster, CH

Threshold Limit

- Eco-indicator 99 (H) points
- 50% of a gas combined cycle power plant

		Certified Systems for Renewable Energy				Conventional Reference Systems				
Threshold Limit		Hydro Power	Wind Energy"	Biogas [∞]	Photovoltaic®	Gas Combined Cycle - Natural Gas	Nuclear Power	Fuel Oil	Hard Coal	UCPTE- Electricity- Mix
13'950	Min	367	1'160	neg.	6'730	27'900	6'260	61'600	28'000	24'600
	Max	637	9'680	neg.	14'900					

Challenges

- Step by step evaluation of different systems. Start with wind, hydro and solar energy
- Consistent definition of system boundaries for new energy systems has to be ensured

System Boundaries

- Development of guidelines
- Allocation of by-products → Credit with 50% of good conventional technique
- Average situation as reference standard

Impact Assessment

- One score impact assessment is necessary in order to compare result with a threshold
- Shortcomings of Eco-indicator 99 are relevant for some (new) systems, e.g. nutrients from biogas plant
- Local criteria cover specific problems of new systems (e.g. fish-ladders, visual impact of wind power, etc.)

Conclusions

- Key parameter models are a valuable tool for plant specific evaluation and comparison of different technologies
- Local criteria are indispensable to support the labelling

Outlook

• Further case studies are on the way for biogas in agriculture, biogas from effluent treatment plants