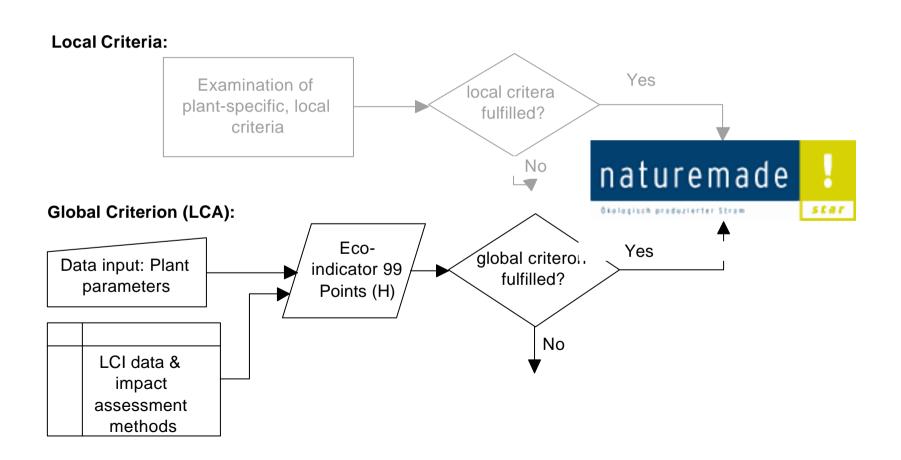
Environmental Labelling of Greer Electricity with Key Parameter Models

Dr. Niels Jungbluth Dr. Rolf Frischknecht ESU-services, Uster

SETAC Europe - LCA Case Studies Symposium

14-15 November 2001, Congress Centre De Leeuwenhorst,

Noordwijkerhout, The Netherlands


Problem Setting

- Opening of electricity markets
- Consumers want to buy environmentally friendly electricity with good ecological criteria
- How can LCA contribute to this kind of question?

Contents

- Labelling scheme
- Rule of LCA and an example
- Consistent system boundaries and other challenges
- Conclusions and outlook

Criteria for Ecolabelling

Detailed LCA for Electricity Production from Wood

- Detailed inventory for three Swiss plants
- Cradle to grave
- Assessment with Eco-indicator 99 and other impact assessment methods
- Analysis of most important stages as entries to the inventory

Key Parameter Model

Key parameter model for wood											
Name of facility	WKK L										
Impact assessment method	EI'99-aggregated, Hierarchist										
Type of plant	WKK Holz mit Multi-Zyklon										
Data input											
Wood chips from forest		t/a	2556								
Wood chips from wood proce		t/a									
Wood chips from wood wast	es	t/a									
Transport distance Emissions to air		km									
Particle		mg/Nm ³	50.0								
NOx as NO2		mg/Nm ³	150.0								
Lead (only for waste wood)		mg/Nm ³	1.0								
Cadmium (only for waste wo	nod)	mg/Nm ³	0.05								
Zinc (only for waste wood)		mg/Nm³	0.5								
Outputs											
Ash for waste management		t/a	3.05E+05								
Type of waste management		Reaktordepon	ie								
Gross electricity production		kWh/a	2.58E+05								
Heat used		kWh/a	2.58E+05								
Results	pro kVVh										
WKK Lengwil per year		El-99-points									
WKK Lengwil / kWh		El-99-points									
Threshold Eco electricity Sw		El-99-points	1.08E-03	0.0%							
Eco electricity criterio	n fulfilled										

Threshold Limit

- Eco-indicator 99 (H) points
- 50% of a gas combined cycle power plant

			Certified Systems for Renewable Energy				Conventional Reference Systems				
	Threshold Limit		Hydro Power	Wind Energy "	Biogas ^z	Photovoltaic®	Gas Combined Cycle - Natural Gas	Nuclear Power	Fuel Oil	Hard Coal	UCPTE- Electricity- Mix
	13'950	Min	367	1'160	neg.	6'730	27'900	6'260	61'600	28'000	24'600
1335	13 330	Max	637	9'680	neg.	14'900					

~

Challenges

- Step by step evaluation of different systems. Start with wind, hydro and solar energy
- Consistent definition of system boundaries for new energy systems has to be ensured

System Boundaries

- Development of guidelines
- Allocation of by-products → Credit with 50% of good conventional technique
- Average situation as reference standard

Impact Assessment

- One score impact assessment is necessary in order to compare result with a threshold
- Shortcomings of Eco-indicator 99 are relevant for some (new) systems e.g. nutrients from biogas plant
- Local criteria cover specific problems of new systems (e.g. fish-ladders, visual impact of wind power, etc.)

Concl usi ons

- Key parameter models are a valuable tool for plant specific evaluation
- Local criteria are indispensable to support the labelling

. .

Outlook

• Further case studies are on the way for biogas in agriculture, biogas from effluent treatment plants

40