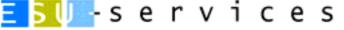
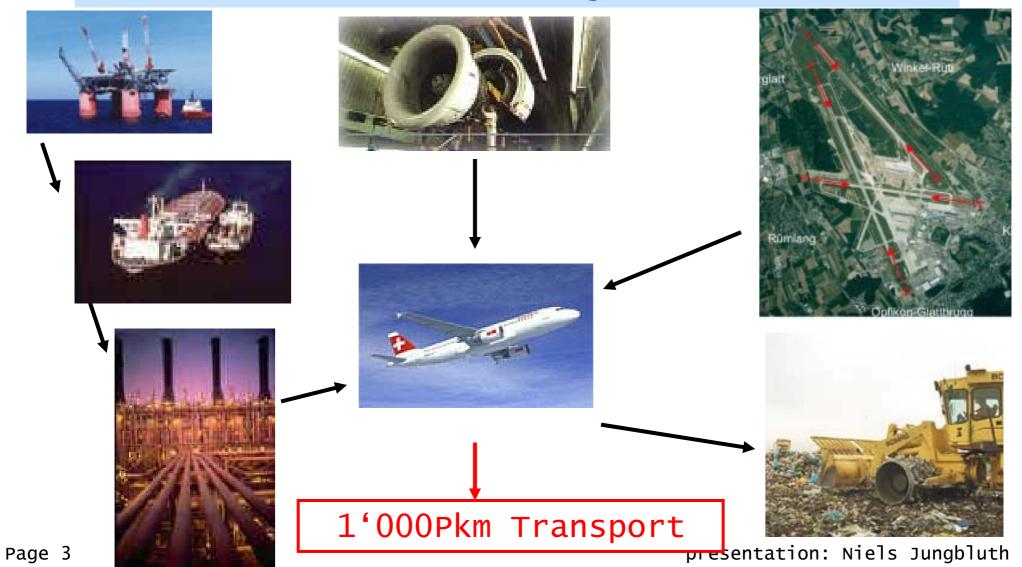
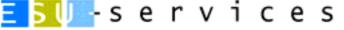

Vergleich von Energieaufwendungen und Umweltbelastungen von PV-Anlagen mit konventionellen Kraftwerken

Dr. Niels Jungbluth <u>jungbluth@esu-services.ch</u> <u>www.esu-services.ch</u> ESU-services, Uster, Switzerland

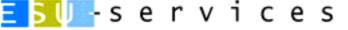


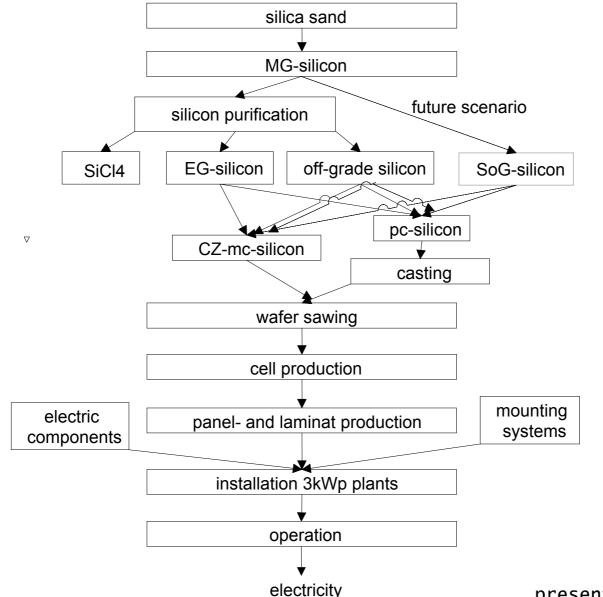
6. Nationale Photovoltaik-Tagung SIG Genf, 24. November 2005




Overview

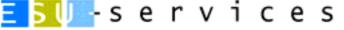
- System boundaries of the ecoinvent data
- Inventories and Up-dates
- Interpretation of results
- Comparison with other energy technologies
- Pay-back time
- Conclusions


Life cycle assessment = from cradle to grave



Life Cycle Assessment

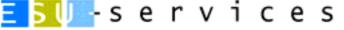
- Balance of all in- and outputs
- Life cycle from cradle to grave
- Assessment of different environmental impacts (e.g. climate change, eutrophication, summer smog)
- Improvement and comparison of production processes



System boundaries PV electricity

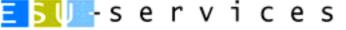
presentation: Niels Jungbluth

Page 5

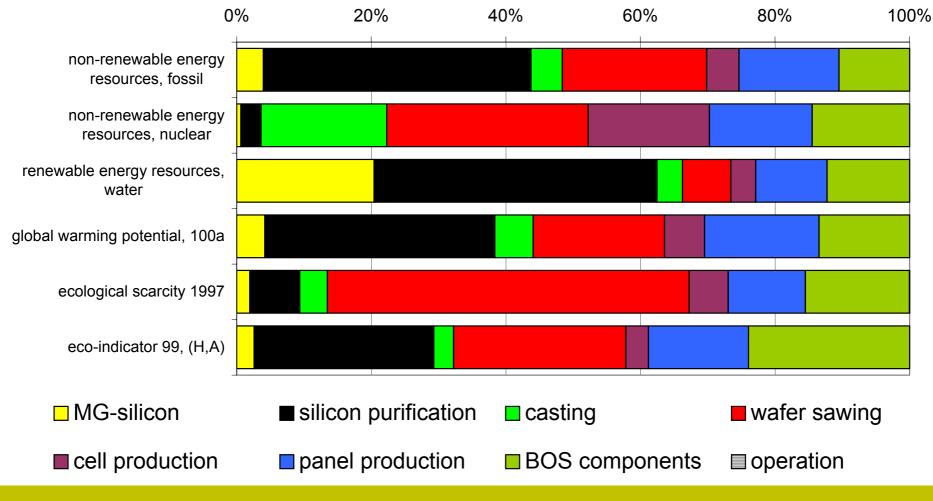


Analysed 3kwp plants

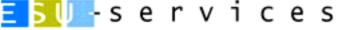
Installation	Cell type	Panel type					
Slope roof	mc-Si	Panel ¹⁾					
	pc-Si	Panel					
	mc-Si	Laminate ²⁾					
	pc-Si	Laminate					
	mc-Si, future	Laminate ²⁾					
	pc-Si, future	Laminate					
Flat roof	mc-Si	Panel					
	pc-Si	Panel					
Facade	mc-Si	Panel					
	pc-Si	Panel					
	mc-Si	Laminate					
	pc-Si	Laminate					
¹): Panel = mounted on the roof							
²): Laminate = integrated in the roof construction							

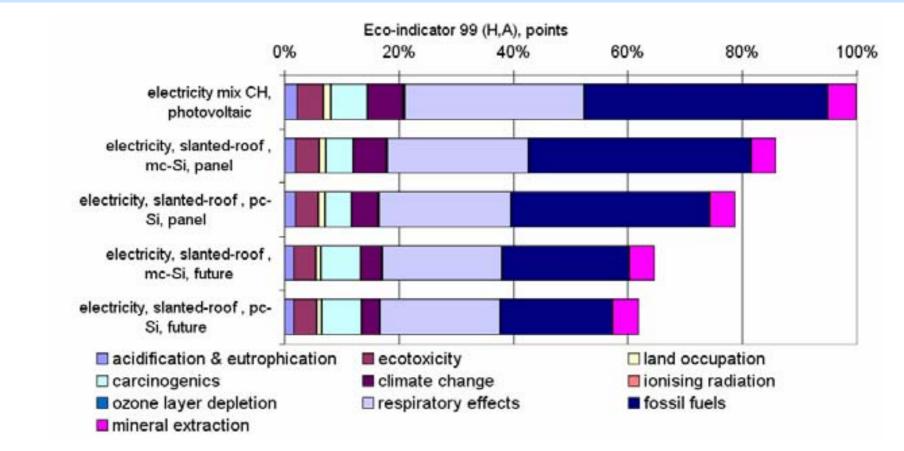

> Life cycle inventory from cradle to grave of plants operated in Switzerland

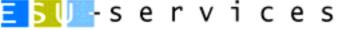
Page 6

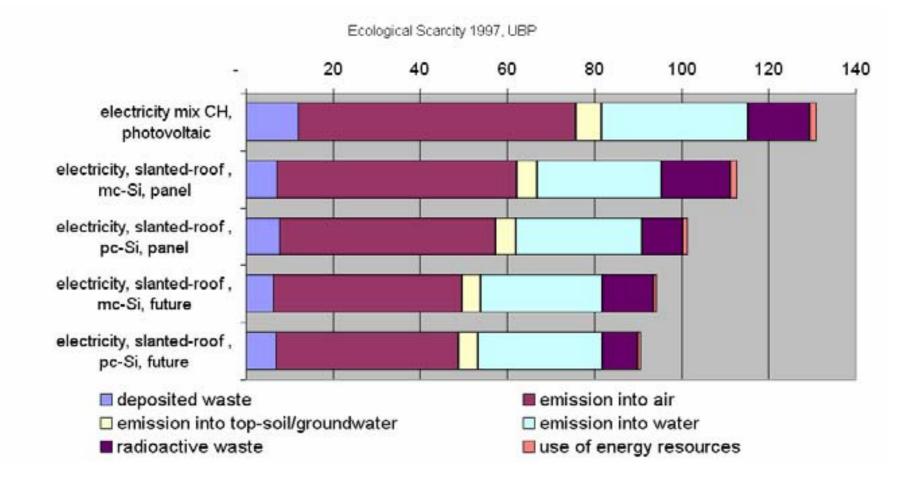


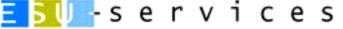
ecoinvent PV inventory

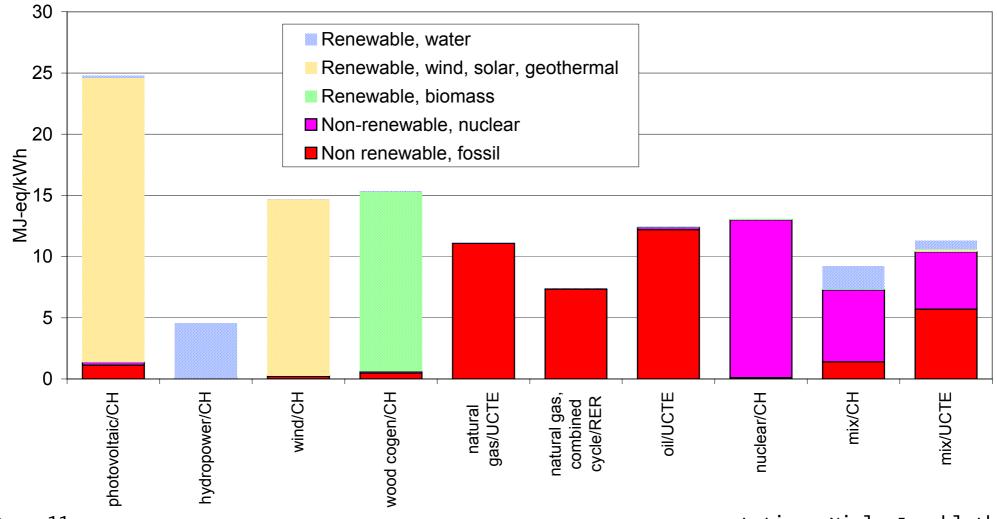

- Extended reworking and update of life cycle inventories for the year 2000
- European production processes that can be considered for plants in Switzerland
- Present technology is still under development. Estimation for possible future improvements until 2010
- Consideration of a range of process specific emissions
- Basis for the evaluation of photovoltaic and comparison with other types of electricity production
- Life time 30a,
- Average production 885 kwh/kwp

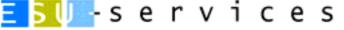

LCIA of PV electricity: Contribution analysis


Important differences for the assessment with different methods

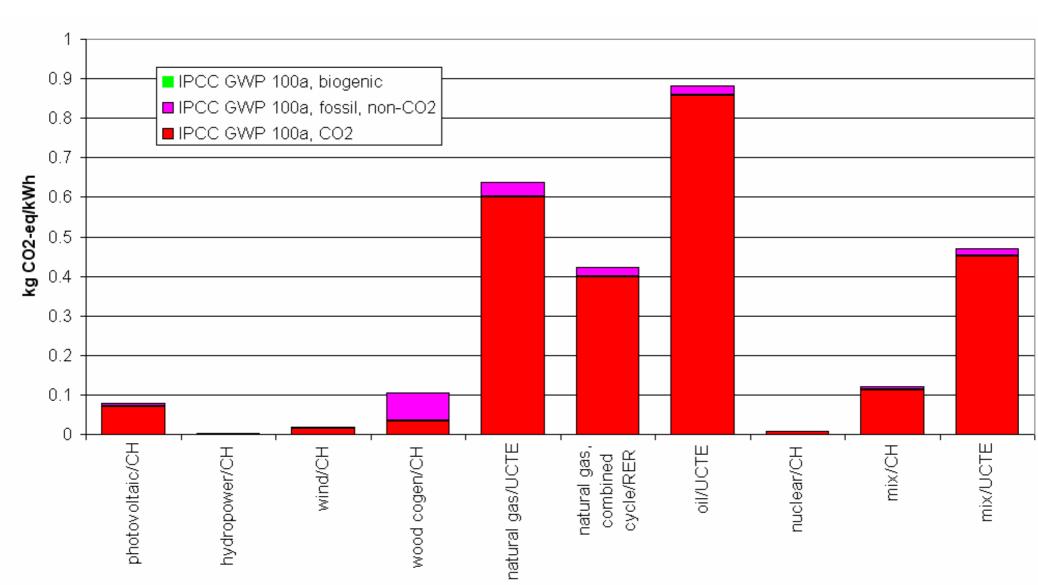

Comparison of PV technologies with Ecoindicator 99 (H,A)

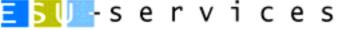

- Respiratory Effects: Particle- und NOx-emissions
- Fossil Fuels: Gas and oil consumption

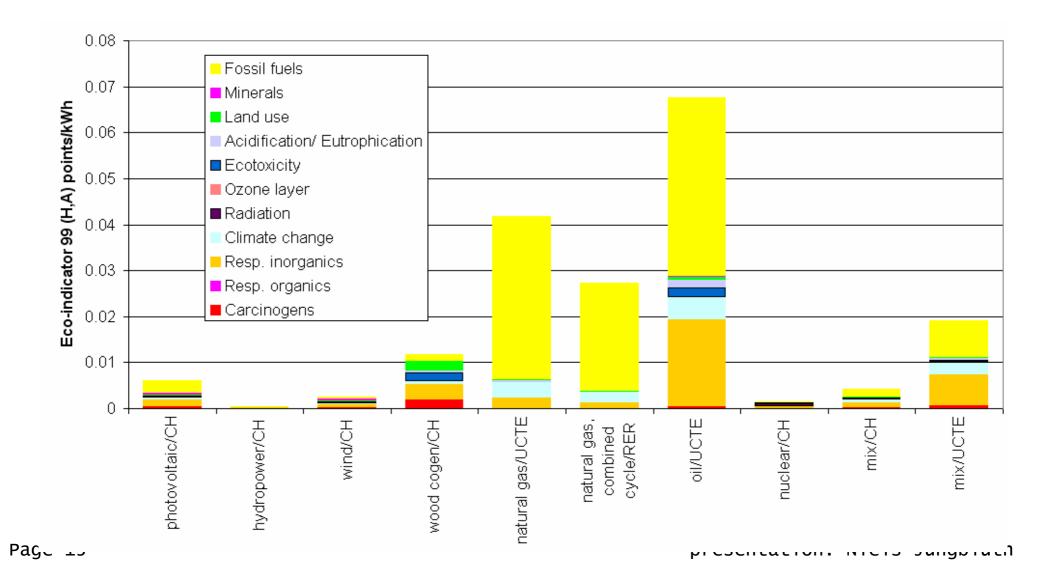

Comparison of PV technologies with ecological scarcity method

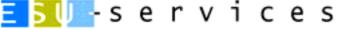


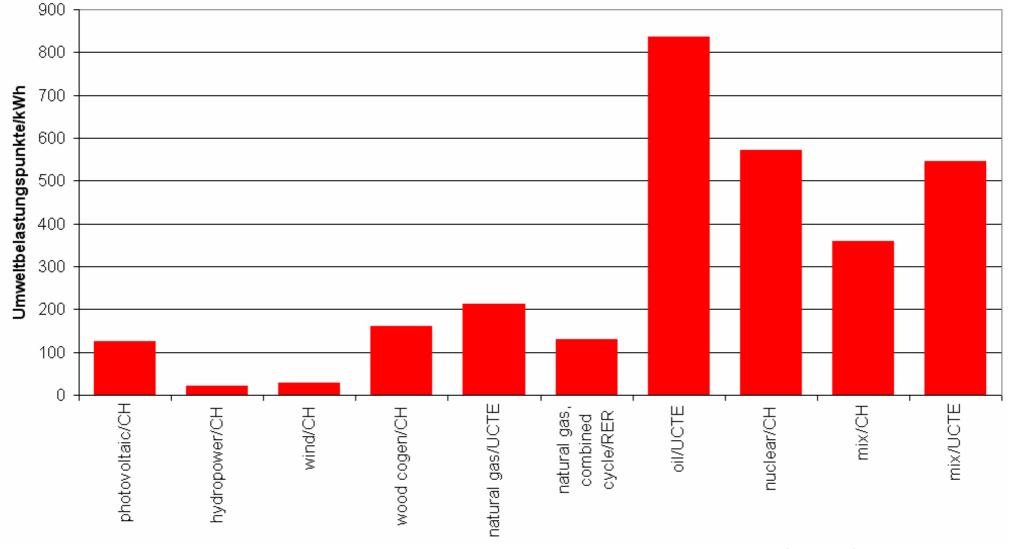
NOx and nitrate from wafer production are important



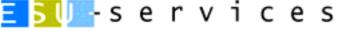

Comparison of power plants cumulative energy demand per kWh_e



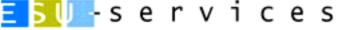

Comparison global warming



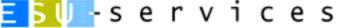
Comparison Eco-indicator 99 (H,A)



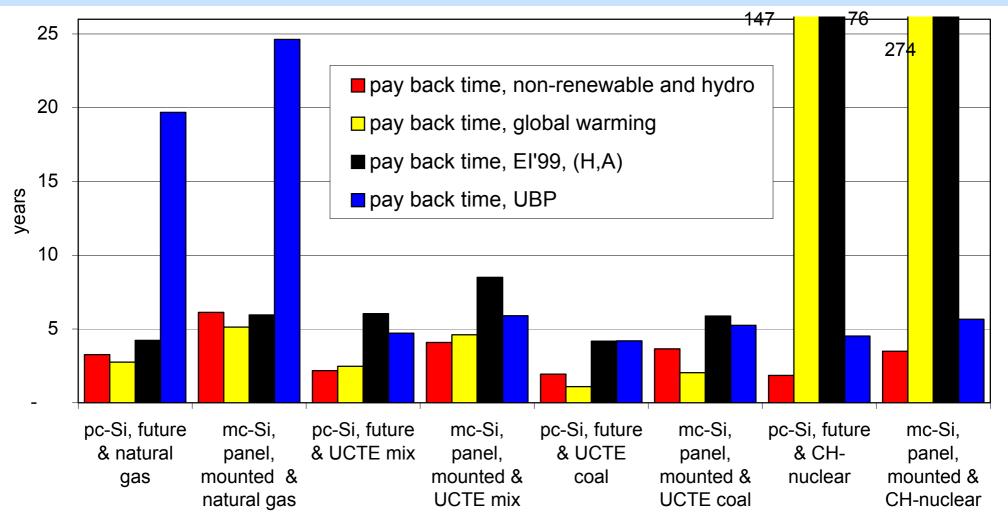
Comparison Ecological Scarcity 97



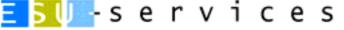
Page 14


Comparison

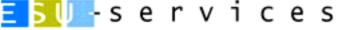
- Photovoltaic is better than fossil fuels and wood
- Comparison with nuclear depends on the type of valuation
- Photovoltaic has disadvantages in comparison to hydro and wind energy
- Life time and yield in kWh/kWp are key factors for the environmental performance
- Further reductions of environmental impacts of about 40% seem to be possible



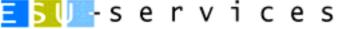
Pay Back Time and Energy Yield


- What type of pay back?
 - -(Non-renewable) energy input
 - -Emissions caused by the production
- What reference system?
 - -Today average electricity production
 - -Old coal power plant (replacement)
 - -Modern gas power plant (alternative investment)

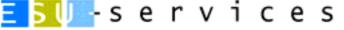
Pay Back Time and Energy Yield


Pay back time and yield factors depends on reference system and LCIA method and are no clear indicator

Outlook

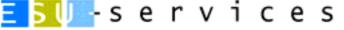

- Forecasts tended to underestimate the environmental impacts
- Improvement potentials for silicon efficiency and production, process specific emissions, cell efficiency and operation performance
- Real market situation (raw material supply, electricity, etc.) must be considered
- Energy analysis or CO2-emissions are not sufficient for an environmental assessment. Process specific emissions are important!
- The cooperation with PV industry (silicon purification, cell production) shows improvement potentials (when compared with other sectors)
- The European Crystal Clear project will help to update life cycle inventory information

Page 18



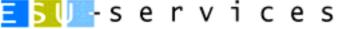
Publications

- Jungbluth N. (2003) Photovoltaik. In: Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz (Ed. Dones R.). Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, CH retrieved from: <u>www.ecoinvent.ch</u>.
- Jungbluth N., Bauer C., Dones R. and Frischknecht R. (2004) Life Cycle Assessment for Emerging Technologies: Case Studies for Photovoltaic and Wind Power. *In: Int J LCA*, **10**(1), retrieved from: <u>http://dx.doi.org/10.1065/lca2004.11.181.3</u> or <u>www.esu-services.ch</u>.
- Jungbluth N. (2005) Life Cycle Assessment for Crystalline Photovoltaics in the Swiss ecoinvent Database. *In: Prog. Photovolt. Res. Appl.*, 2005(13), retrieved from: <u>www.esu-services.ch</u> or <u>http://www3.interscience.wiley.com/cgi-bin/jtoc/5860</u>


Annexe: Life Cycle Inventory

Future scenario for 2005-2010

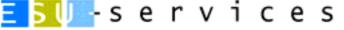
- Present technology is still under development
- Goal: Evaluation of the potential for future PV applications
- Production of purified solar-grade silicon in a specific process
- Reduction of energy consumption in different stages based on observed minimum figures from literature
- Better efficiency of solar cells


- pc-Si = 15.7%, mc-Si = 17.5%

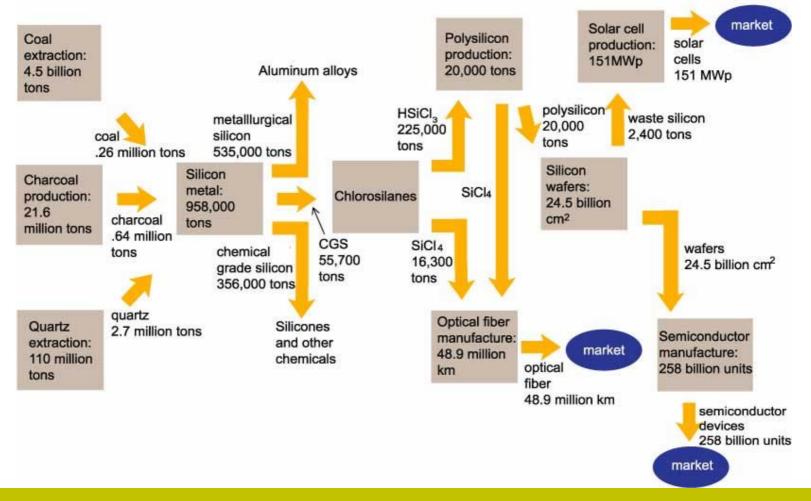
	Key parameter						
	unit	mc-Si	pc-Si	mc-Si future	pc-Si future		
MG-silicon production							
electricity use, NO hydro power	k/Wh/kg	11	11	11	11		
EG-silicon production							
electricity use, DE, plant specific	k/Wh/kg	103	103	37	37		
CZ-silicon production							
electricity use, UCTE	k/Vh/kg	123	-	100	-		
mc-Si and pc-Si wafer							
thickness wafer	μm	300	300	300	300		
sawing gap	μm	200	200	200	200		
wafer area	cm²	100	100	100	100		
weight	g	6.99	6.99	6.99	6.99		
cell power	WP	1.65	1.48	1.75	1.57		
cell efficiency	%	16.5%	14.8%	17.5%	15.7%		
use of MG-silicon	gWafer	19.0	19.2	16.3	18.1		
EG-silicon use per wafer	gWafer	11.2	11.2	9.3	9.3		
process energy	kWh/Wafer	0.3	0.3	0.15	0.15		
mc-Si and pc-Si cells							
process energy	KWh/cell	0.2	0.2	0.11	0.11		
panel/ laminate, mc-Si/ pc-Si							
number of cells	cells/panel	112.5	112.5	112.5	112.5		
panel area	cm²	12529	12529	12529	12529		
active area	cm ²	11250	11250	11250	11250		
panel power	Wp	185	166	197	177		
efficiency production	%	97%	97%	97%	97%		
use of cells mc-Si/ pc-Si	cells/kWp	608	677	571	637		
process energy	MJ/KWp	0.23	0.26	0.20	0.23		
3kWp-plant	P						
panel area	m²/3kWp	18.2	20.3	17.1	19.1		
operation							
yield, slope-roof	k/vh/k/vp	885	885	885	885		
yield, facade	k/vh/k/vp	626	626				
yield, CH electricity mix	kwh/kw	819	819				

iels Jungbluth

Pa -,

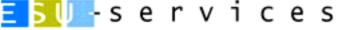


Silicon efficiency


		mc-Si pc-Si		mc-Si,	pc-Si,
				optimiert	optimiert
	Unit	Stk	Stk	Stk	Stk
Spezifisches Gewicht Silizium	g/cm3	2.33			
Ausbeute Zellenherstellung	%	95%	92%	95%	92%
Waferdicke	μm	300	300	300	300
Sägespalt	μm	200	200	200	200
Wafergrösse	cm ²	100	100	100	100
Wafergewicht	g	6.99	6.99	6.99	6.99
Sägeverluste Wafer	g	4.66	4.66	4.66	4.66
Sägeverluste	%	60%	60%	60%	60%
Davon Recycling	%	10%	10%	50%	50%
Summe Si direkt für Wafer	g	11.18	11.18	9.32	9.32
Ausbeute pc-Silizium Blockgiessen	%	-	67%	-	70%
Ausbeute pc-Silizium zu CZ-mc-Silizium	%	65%	-	75%	-
Bedarf gereinigtes Silizium pro Zelle	g	18.1	18.2	13.0	14.5
Bedarf gereinigtes Silizium pro Wp	g	11.0	12.3	7.5	9.2
Ausbeute MG-Silizium zu gereinigtem Silizium	%	95%	95%	80%	80%
Bedarf MG-Silizium pro Zelle	g	19.0	19.2	16.3	18.1
Gesamteffizienz MG-Si zu Wafer	%	36.8%	36.5%	42.9%	38.5%

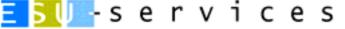
Verified with Top-Down data for MG-silicon use per kWp

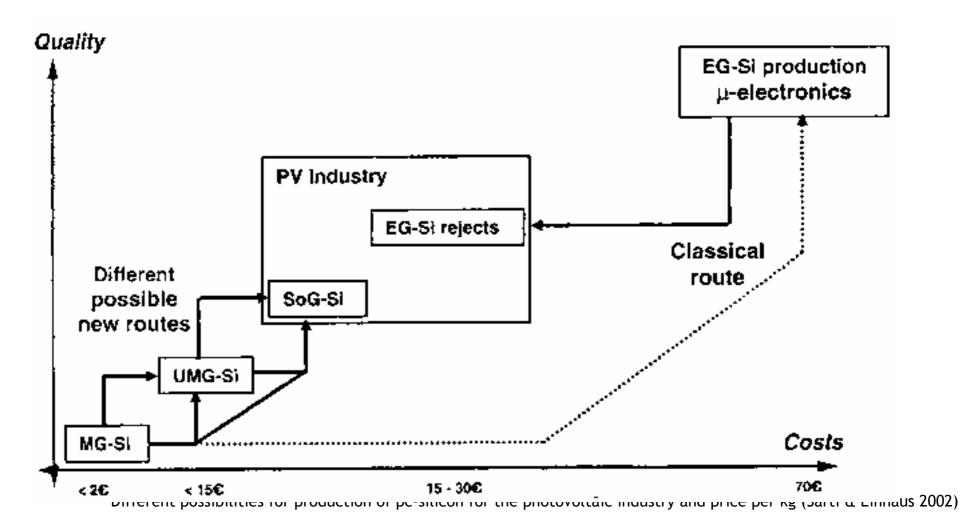
Page 23

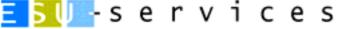


Silicon: A global market

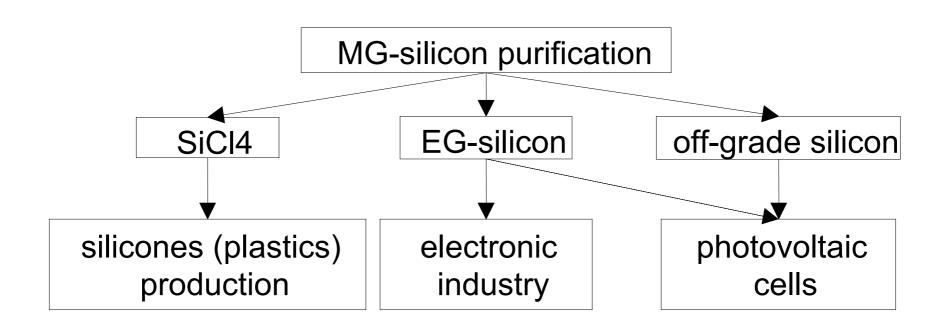
Silicon used for PV is not important for the total silicon market


Page 24

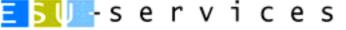

MG-silicon


- Assumption of electricity mix for Norway (hydro power)
- Other producers in France (nuclear power) not considered

> Use of charcoal from rainforest might be an important issue for further investigation

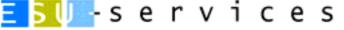


EG-silicon production routes and prices

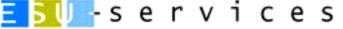


One process - Three products

Simplification to assume all off-grade silicon coming directly from EG-silicon purification

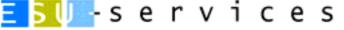

Page 27

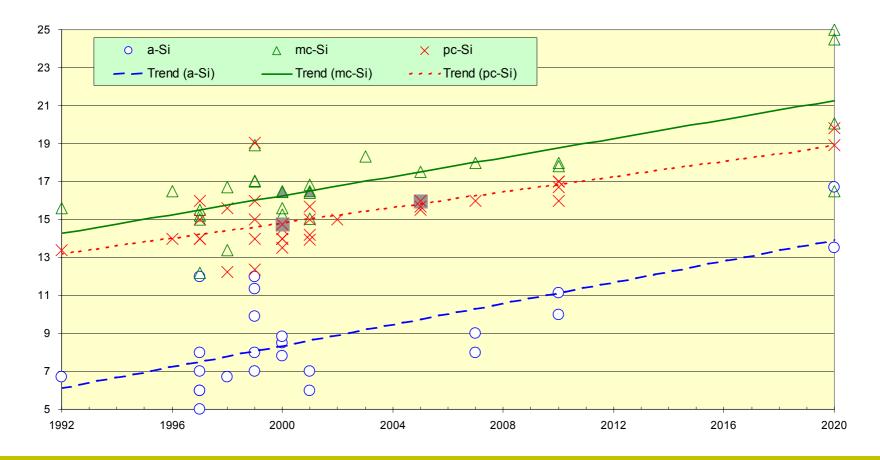
Example: inventory for allocated products


	Name	Location	Unit	MG-silicon, to purification DE	silicon, electronic grade, at plant DE	silicon, electronic grade, off- grade, at plant DE	silicon tetrachlorid e, at plant DE	Allocation criteria
	Unit			Kg	kg	kg	kg	
allocated products	silicon, electronic grade, at plant silicon, electronic grade, off-grade, at plant silicon tetrachloride, at plant	DE DE DE	kg kg kg	6.76E-1 8.44E-2 1.20E+0	100 0	0 100 0	0 0 100	
technosphere	MG-silicon, at plant	NO	kg	1.00E+0	71.1	8.9		Material balance
	polyethylene, HDPE, granulate, at plant	RER	kg	6.37E 4	72.0	2.4	25.6	Revenue all products
	hydrochloric acid, 30% in H2O, at plant	RER	kg	2.00E+0	48.4	1.6	50.0	Stoechometric calculation
	natural gas, burned in boiler condensing modulating >100kW	RER	MJ	1.22E+2	96.8	3.2		Revenue purified silicon
	electricity, natural gas, at combined cycle plant, best	RER	kWh	8.66E+1	96.8	3.2		Revenue purified silicon
	electricity, hydropower, at run-of-river power plant	RER	kWh	2.74E+1	96.8	3.2	-	Revenue purified silicon
	price revenue	GLO GLO	€ €	70.36 70.36	75.00 50.67	20.00 1.69	15.00 18.00	
		Location	it	MG-silicon,	silicon, electronic	silicon, electronic	silicon]
	Name		Unit	to purification	grade, at plant	grade, off- grade, at plant	tetrachlorid e, at plant	
	Unit	0	0	kg	kg	kg	kg	
allocated	silicon, electronic grade, at plant	DE	kg		1	0) (
products	silicon, electronic grade, off-grade, at plant silicon tetrachloride, at plant	DE DE	kg kg		0	1	ر ۱	
technosphere	MG-silicon, at plant	NO	kg		1.1	1.1		Material balance
to of moophier o	polyethylene, HDPE, granulate, at plant	RER	kg		6.79E-4	1.81E-4	1.36E-4	Revenue all products
	hydrochloric acid, 30% in H2O, at plant	RER	kg		1.4	0.4	0.8	Stoechometric calculation
	natural gas, burned in boiler condensing modulating >100kW	RER	MJ		174.2	46.5	-	Revenue purified silicon
	electricity, natural gas, at combined cycle plant, best electricity, hydropower, at run-of-river power plant	RER RER	kWh kWh		124.1 39.2	33.1 10.5	-	Revenue purified silicon Revenue purified silicon

> Elementary Flow times allocation factor divided through output equals the single inventory

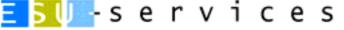
Silicon purification


- Allocation with 100% rule considering all products of the process
- Plant specific electricity mix for EG-silicon (largest European plant in Germany)
- Update for the most important process parameters (energy use)
- Analysis of process specific emissions and infrastructure
- > Simplification to assume all off-grade silicon coming directly from EG-silicon purification
- > High dynamic in the silicon market not driven by PV
- SoG-silicon discussed for 20 years but still not realized
- > Forecasts for energy use turned out to be to optimistic

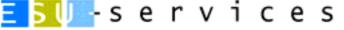

CZ-silicon, casting, wafer- and cell production

- Update for silicon yields
- Analysis of further process specific emissions with data from environmental reports and literature
- 50% EG-silicon and 50% Off-grade silicon as input in 2000
- 50% Solar-grade-silicon and 50% Off-grade silicon in future
- CZ-silicon investigated with data from German producer for IT-products and literature data
- EG-silicon is used today because of IT-sector crisis
- > Still data gaps due to little information from industry and uncertain data

Page 30



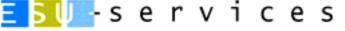
Cell efficiencies


- Updated cell efficiency: pc-Si = 14.8%, mc-Si = 16.5%
- Forecasts tend to overestimate future improvements

Page 31

Module- and plant production, operation for electricity production

- Considering today sizes of cells and modules
- Only punctual update of old inventories for manufacturing
- Present yield of power plants operated in Switzerland
 - 819 kwh/kwp for production average
 - 885 kWh/kWp for flat roof and 626 kWh/kWp for facade
- Calculation of photovoltaic supply mix for Switzerland



Results of inventory analysis (Example)

	Name		electricity, photovoltaic, at 3kWp slanted-roof , mc-Si, panel, mounted	[′] MinValue	MaxValue	electricity, photovoltaic, at 3kWp slanted-roof , pc-Si, panel, mounted	MinValue	MaxValue
	Location Unit Infrastructure	Unit	CH kWh 0			CH kWh 0		
Particulates, < 2.5 um	high population density	kg	2.0E-6	1.1E-6	3.6E-6	1.7E-6	1.1E-6	2.6E-6
Particulates, < 2.5 um	low population density	kg	1.5E-5	8.2E-6	2.7E-5	1.3E-5	8.1E-6	2.1E-5
Particulates, < 2.5 um	lower stratosphere + upper troposphere	kg	7.5E-16	3.0E-16	1.6E-15	5.9E-16	2.4E-16	1.2E-15
Particulates, < 2.5 um	unspecified	kg	5.0E-6	1.6E-6	1.2E-5	5.0E-6	1.4E-6	1.2E-5
Particulates, < 2.5 um total		kg	2.2E-5			2.0E-5		

- About 1000 Elementary Flows in the inventory analysis
- Division in SubCategories

Page 33

Shortcomings

- Most elementary flows are based on only one information source
- If several sources are available they show a large variation
- Data are mixed from different sources and different time periods
- Refinements shall be concentrated on key parameters for LCIA