Life Cycle Assessment of different BtL-Fuel Pathways from Wood, Straw and Miscanthus

Dr. Niels Jungbluth ESU-services Ltd., Uster, Switzerland

36th Discussion Forum "LCA of Future Biofuels" EMPA Akademie Dübendorf Monday, November 17, 2008

Overview

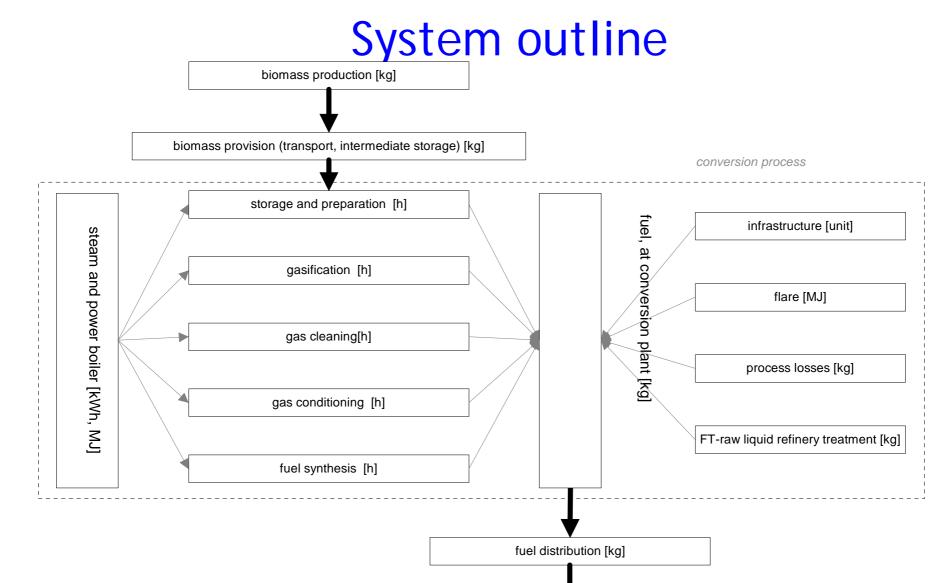
- Biomass-to-liquid fuels can be produced in different process layouts
- BTL fuels reduce climate change effect compared to fossils
- Only some production pathways comply with Swiss biofuels directive
- The type of biomass and conversion efficiency are most important for the assessment

Classification of fuels: Marketing and brand names

- <u>Sunfuel</u>, <u>Sundiesel</u>: <u>synthetic fuels from Choren process</u>)
- Ökodiesel, Biodiesel: mainly used for XME with biomass from different origin
- Naturgas: natural gas mixed with >10% biogas
- Kompogas: brand name of biogas plants
- 1st, <u>2nd</u>, 3rd generation: unclear definition e.g. based on today market share, resource types or edibility or conversion processes

Marketing and brand names do not help for a discussion on renewable fuels

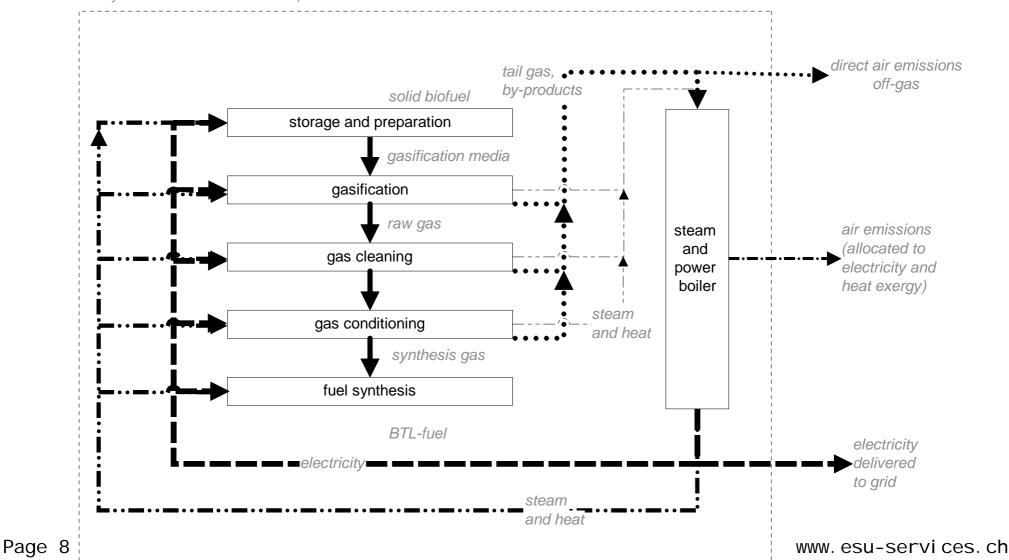
Classifications of powertrain fuels


- Resources used
 - Non-renewable: crude oil, natural gas, coal, nuclear
 - Renewable: <u>energy crops</u> (edible, <u>non-edible</u>), algae, <u>forest wood</u>, <u>biomass</u> <u>residues (e.g. straw)</u>, industrial residues (e.g. <u>Black Liquor</u>), sun, <u>wind</u>
- Conversion process technologies
 - mechanical, chemical reaction, thermal treatment, fermentation, anaerobic digestion, pyrolysis, gasification, Fischer-Tropsch synthesis, biotechnical
- Chemical classification of the product
 - methane, ethanol, methanol, <u>dimethylether (DME)</u>, hydrogen, oils, methyl ester, <u>liquids</u> (petrol, diesel, <u>BtL</u>, GtL), ETBE, MTBE
- > Fuels can only be classified by a combination of resource, process and product
- Biomass-to-liquid (BTL) fuels from black-liquor, miscanthus, wood and straw

Questions related to BTL production

- Which BTL production route is the one with the lowest environmental impacts?
- Improvement options of production routes, e.g. biomass inputs?
- Priorities for process development?
- Scenarios for technology development for BtLproduction plants and influence on results?

Sometimes termed as well-to-tank



Key data biomass production

- Straw, short-rotation wood and miscanthus
- data given per kg dry substance (DS)

		bundles, short- rotation wood	bundles, short-rotation wood	miscanthus- bales	miscanthus- bales	wheat straw, bales	wheat straw, bales
		starting point	scenario 1	starting point	scenario 1	starting point	scenario 1
N-fertilizer	g/kg DS	5.2	6.3	4.0	5.6	2.2	1.8
P2O5-fertilizer	g/kg DS	4.0	3.5	3.1	2.8	1.1	0.8
K2O-fertilizer	g/kg DS	6.4	5.4	5.1	4.3	0.9	1.5
Lime	g/kg DS	6.5	5.9	3.6	2.4	4.4	2.8
diesel use	g/kg DS	5.1	4.9	4.3	3.3	2.3	1.4
yield, bioenergy resource	kg DS/ha/a	10'537	12'630	14'970	20'504	4'900	6'719
yield, wheat grains	kg DS/ha/a	-	-	-	-	3'718	4'428
energy content of biomass	MJ/kg DS	18.4	18.4	18.8	18.8	17.2	17.2
losses during storage	%	7%	4%	6%	3%	6%	3%

system boundaries of conversion process

-services

fair consulting in sustainability

LCI and LCIA modelling principles

- No modelling of intermediate flows between conversion stages
- Emissions of power plant are allocated to heat and electricity based on exergy production
- No allocation of biomass input to by-products, like electricity
- No agreement on LCIA of pesticides and heavy metals in the project

General assumptions necessary

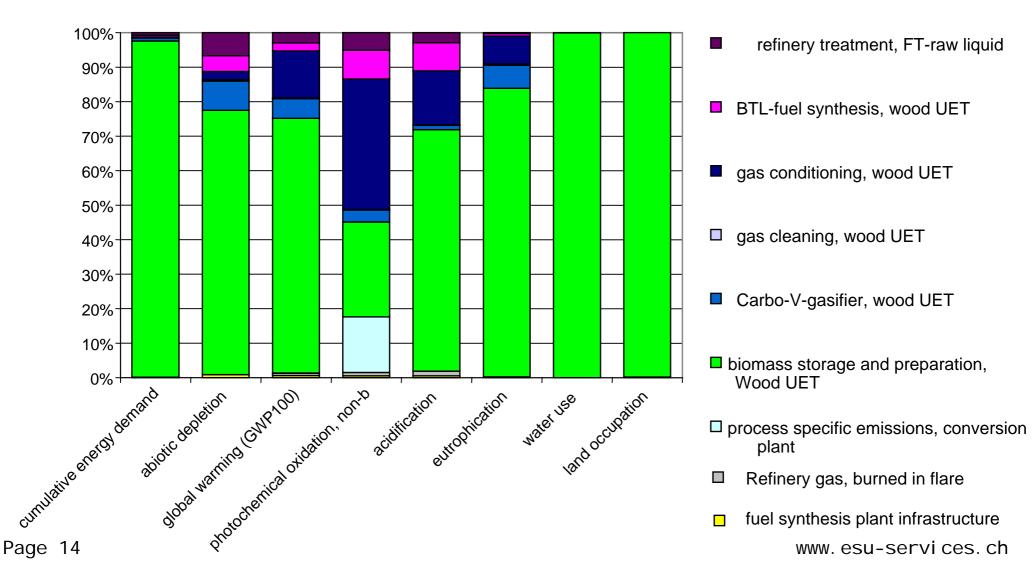
- Data provided are completed with general assumptions
- Emission profile of conversion based mainly on gas or wood power plants
- Waste and effluent composition available only from model calculation
- Catalyst use assessed based on literature
- All assumptions approved by process developers

Characteristics of data

•Concept¤	Centralized Entrained Flow Gasification¤	Centralized Autothermal Circulating Fluidized Bed Gasification¤	Decentralized Entrained Flow Gasification¤	Allothermal Circulating Fluidized Bed [.] Gasification¤	Entrained Flow Gasification of Black Liquor for DME-production
 Abbreviation[®] 	<u>çEF</u> -D×	CFB-D×	dEE-D≈	ICFB-D×	BLEF-DME×
•Develope r ¤	UET¤	GUTEC¤	FZK¤	TUV¤	CHEMREC¤
•Biomass input¤	Amount-and-type¤	Amount and type¤	Amount and type¤	Amount and type¤	Amount and type¤
•Biomass type¤	Wood,∙straw¤	Wood, straw¤	Straw¤	Wood, miscanthus¤	Wood, black liquor¤
•Heat∙and• electricity•use¤	Provided¤	Provided¤	Provided and own assumptions¤	Provided¤	Provided¤
•Auxiliary materials¤	Hydrogen, Eg(OH)2¤	Filter-ceramic, RME, silica- sand, quicklime, iron- <u>chelate^o</u>	Nitrogen, silica sand¤	Nitrogen, RME, quicklime, silica sand¤	None¤
•Catalysts¤	Literature¤	Literature¤	Literature¤	Amount of zine catalysto	Literature¤
■Concentration air emissions¤	CO¤	No data¤	H2S¤	CO,∙CH₄,∙NM∨OC¤	CO, H2S, CH₄∙¤
∎Other∙air∙ emissions¤	Literature for gas firing¤	Literature for gas firing¤	Literature for gas firing and own calculations	Literature for gas firing¤	Literature for wood firing¤
●Amount of air emissions¤	Calculated with emission profile and CO2 emissions¤	Calculated with emission profile and CO2 emissions [®]	Calculated with emission profile and own assumptions on CO2.¤	Calculated with emission profile and CO2 emissions¤	Calculated with emission profile and CO2 emissions¤
▪Effluents¤	Amount-and- concentration¤	Only-amountRough- assumption-on-pollutants¤	Only-amountRough- assumption-on-pollutants¤	Only-amountRough- assumption-on- pollutants¤	Only-amountRough- assumption-on-pollutants¤
∙Wastes¤	Amount-and-compositions	Only-amount¤	Only⋅amount¤	Only∘amount¤	Only∘amount¤
∙Fuel∙upgrading¤	Included in process data¤	Standard-RENEW-model-for- upgrading¤	Standard-RENEW-model-for- upgrading¤	Standard RENEW model for upgrading¤	not necessary¤
■Products¤	BTL-FT, electricity¤	FT-raw-product, electricity [©]	FT-raw-product, electricity¤	FT-raw∙product, electricity¤	BTL-DME¤

Key data of modelling conversion in 2020

				conversion rate (biomass to all liquids)	capacity biomass input (MW)	all liquid products (diesel, naphtha, DME)
Biomass	Product	Code	Developer	energy	energy	toe/h
Wood	BTL-FT	cEF-D	UET	53%	499	22.5
Straw	BTL-FT	cEF-D	UET	57%	462	22.3
Wood	BTL-FT	CFB-D	CUTEC	40%	485	16.6
Straw	BTL-FT	CFB-D	CUTEC	38%	463	15.0
Straw	BTL-FT	dEF-D	FZK	45%	455	17.5
Wood	BTL-FT	ICFB-D	TUV	26%	52	1.1
Miscanthus	BTL-FT	ICFB-D	TUV	26%	50	1.1
Wood	BTL-DME	BLEF-DME	CHEMREC	69%	500	29.0



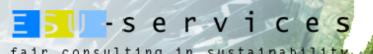
Discussion of results for BTL-fuel production

- CML characterisation
- Evaluation of product stages
- Comparison of biomass and conversion concepts
- Peer review according to ISO14040

Contribution of sub-processes (cEF-D, wood)

Observations

- Most important are impacts from biomass production
- Direct gaseous emissions are relevant for summer smog
- Comparison within process stages is difficult


Comparisons

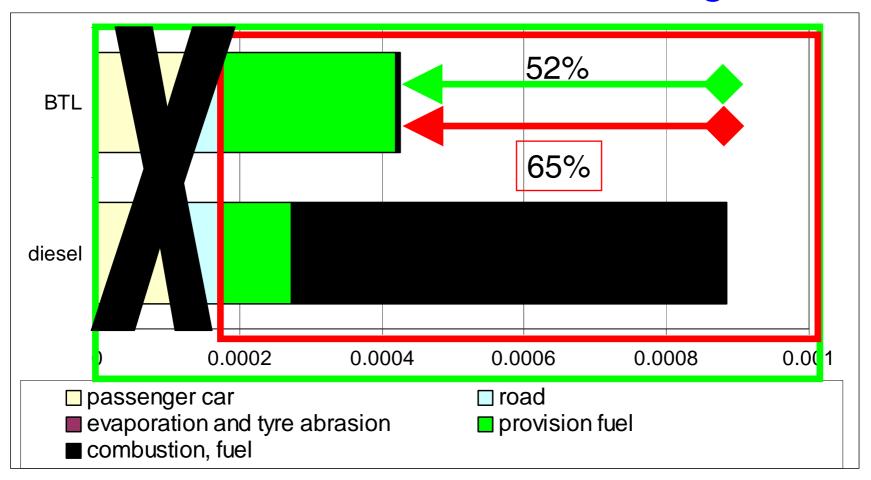
- cEF-D lowest impacts mainly because of conversion efficiency
- No clear ranking of all processes if CML indicators are used
- ICFB-D has highest impacts in all categories because of low conversion efficiency to fuel (but by-product electricity)
- No clear recommendation comparing wood and straw and only one conversion process using miscanthus (ICFB-D)

General improvement options for conversion process

- Improve agricultural biomass production
- Increase of the fuel yield
- Reduce direct emissions (CH₄, NMVOC, NO_x, particles) with off-gases and from the power plant
- Recycling of nutrients in slag and ashes

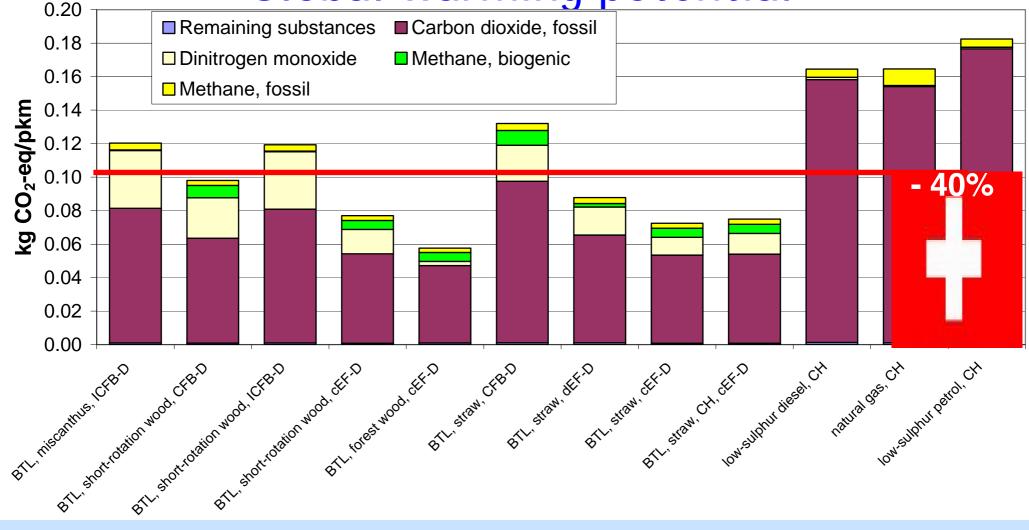
Life cycle assessment of using BTL (full life cycle)

- What are the environmental impacts of using BTL-fuels compared to fossil diesel?
- Importance of fuel combustion for total environmental impacts?
- GWP reduction potential
- Comparison of BTL with today biofuels?
- Yields per hectare compared to present situation?
- → Follow-up study commissioned by Swiss authorities in the framework of "Ökobilanz von Energieprodukten"

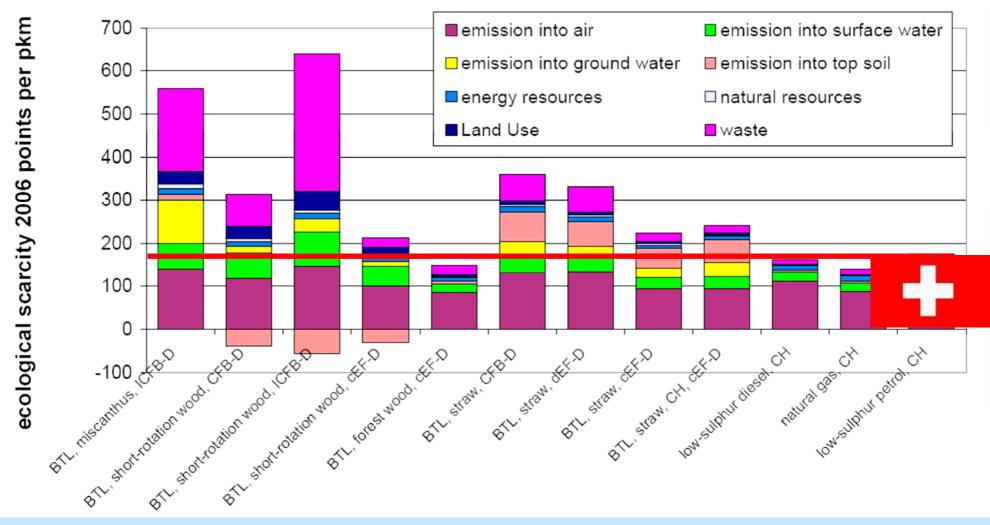


How much better are renewable fuels?

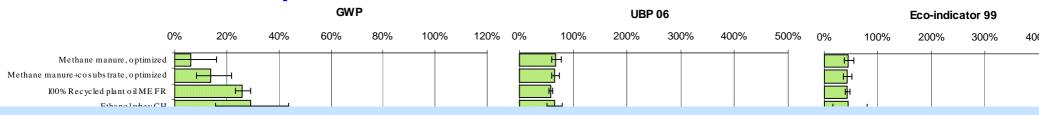
• Easy question without an easy answer ...


Exclusion of certain stages

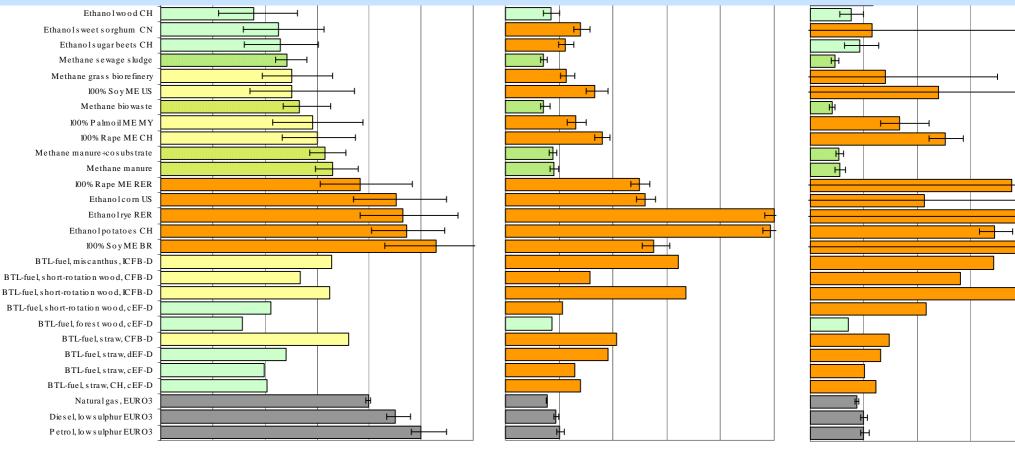
> The following assessment includes the full life cycle


Global warming potential

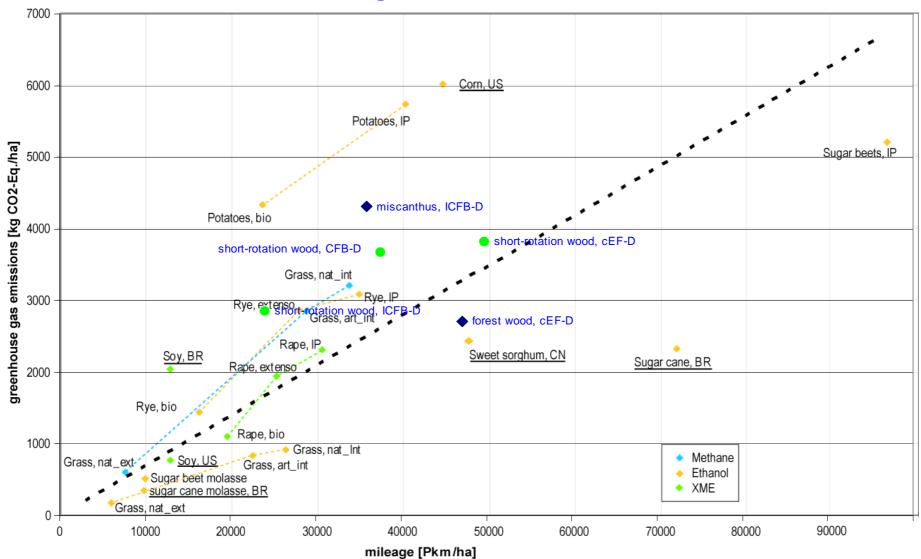
 \succ GWP reduction between 28% and 69% \rightarrow lower than what has been assumed so far



The whole picture: overall env. impact


Big differences between the production routes of the same biomass type

Comparison of renewable fuels


> No clear advantage nor disadvantage of BTL compared to other agrofuels

Type of biomass resource is most important for each type of fuel

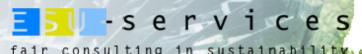
Mileage per hectare

Main observations for BtL

- Low emissions of GHG during combustion outweigh the higher impacts of fuel production for GWP
- Reduction potential for GWP and non-renewable energy is about 30% to 70% if the full life cycle is taken into account
- Other environmental impacts of BTL-fuel from agricultural biomass are higher than using fossil fuels
- Comparison with present agrofuels and evaluation of fuel yields show no generally better performance
- Type of biomass and conversion efficiency are important
- Criteria for Swiss tax exemption might be fulfilled by some production pathways

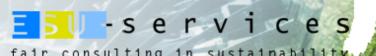
Thank you for your attention!

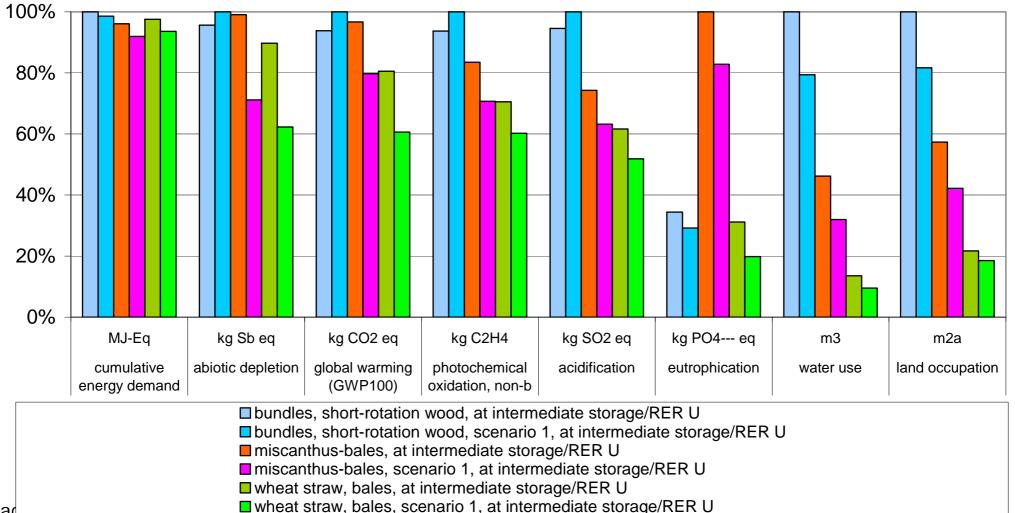
Publications:


- LCA of Biomass-To-Liquid fuel production (<u>www.esu-services.ch/renew.htm</u>)
- LCA of Biomass-To-Liquid fuel use (www.esu-services.ch/btl)

Niels Jungbluth jungbluth@esu-services.ch <u>www.esu-services.ch</u> ESU-services Ltd., Uster, Switzerland

Annexe LCA of BTL-production

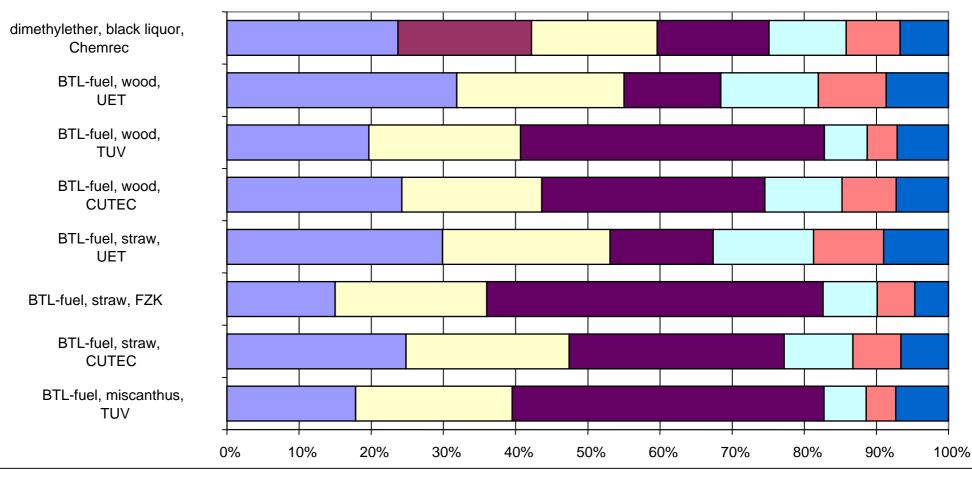

Dr. Niels Jungbluth ESU-services Ltd., Uster, Switzerland



Intermediate Storage Key assumptions

Name		miscanthu s-bales, at intermediat e storage	scenario 1 at	short-rotation wood at	wood, scenario 1 at	bales, at t intermediate	wheat straw, bales, scenario 1, at intermediate storage	UncertaintyType StandardDeviation 95%	GeneralComment
Location		RER	RER	RER	RER	RER	RER		
InfrastructureProcess		0	0	0	0	0	0		
Unit		kg	kg	kg	kg	kg	kg		
biomass losses during storage	%	6%	3%	7%	4%	6%	3%		Expert guess
water content of biomass	%	30%	30%	20%	20%	15%	15%	15	km transport distance 1st gathering point (Ganko 2006
share of bales with plastic foil	%	90%	10%	0%	0%	90%	10%	175	kg dry matter biomass per bale
share of closed storage	%	10%	90%	10%	90%	10%	90%		Expert guess
share on open ground	%	90%	10%	90%	10%	90%	10%	400	kg storage good per m2
carbon content	%	47%	47%	48%	48%	46%	46%		boundary conditions
lower heating value	MJ	13.64	13.64	12.16	12.16	13.10	13.10		Boundary conditions

Biomass, at intermediate storage (per MJ biomass energy)



Interpretation for biomass production

- Main factors are fertilizer and diesel use and emissions due to use of fertilizers
- Small variations in scenarios
- General uncertainty in agricultural data is higher than the differences between scenarios
- Straw has lower impacts due to economic allocation, wood has higher or about the same impacts as miscanthus except for eutrophication

Analysis of individual pollutants, i.e. Photochemical Oxidation

-services

Pag

Scenarios

- Starting point scenario provides a good basis for comparison of different conversion concepts
- Scenario 1 shows what would be possible if fuel yield should be maximized at a certain place.
 Hydrogen produced with wind power is used to maximize the fuel production

Key data scenario 1

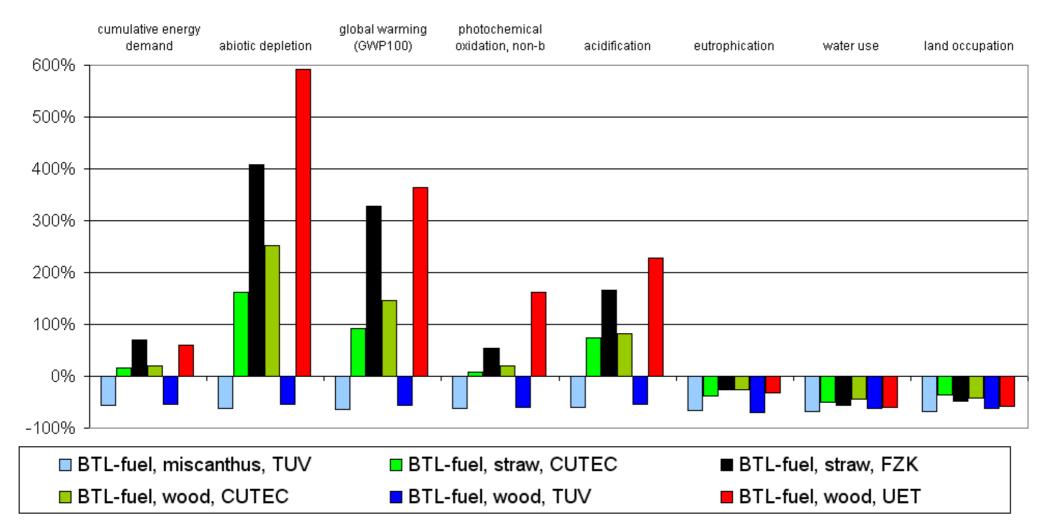
				conversion rate (biomass to all liquids)	capacity biomass input (MW)	external electricity, including H2 production	hydrogen input conversion	all liquid products (diesel, naphtha, DME)
Biomass	Product	Code	Developer	energy	energy	MW	kg/kg product	toe/h
Wood	BTL-FT	cEF-D	UET	108%	499	489	0.24	45.6
Wood	BTL-FT	CFB-D	CUTEC	57%	485	135	0.13	23.4
Straw	BTL-FT	CFB-D	CUTEC	56%	464	149	0.13	21.9
Straw	BTL-FT	dEF-D	FZK	91%	455	515	0.34	34.9
Wood	BTL-FT	ICFB-D	TUV	55%	518	-	-	24.1
Miscanthus	BTL-FT	ICFB-D	TUV	57%	498	-	-	24.0

Well to tank comparison

	Biomass	Miscanthus	Straw	Straw	Straw	Wood	Wood	Wood	Wood
	Process	Allothermal Circulating Fluidized Bed Gasification	Centralized Autothermal Circulating Fluidized Bed Gasification	Decentralized Entrained Flow Gasification	Centralized	Centralized Autothermal Circulating Fluidized Bed Gasification	Allothermal Circulating Fluidized Bed Gasification	Centralized Entrained Flow	Entrained Flow
I	Code	ICFB-D	CFB-D	dEF-D	cEF-D	CFB-D	ICFB-D	cEF-D	BLEF-DME
	Company	TUV	CUTEC	FZK	UET	CUTEC	TUV	UET	CHEMREC
Category indicator	Product	BTL-FT	BTL-FT	BTL-FT	BTL-FT	BTL-FT	BTL-FT	BTL-FT	BTL-DME
cumulative energy demand	MJ-Eq	252%	186%	147%	115%	169%	263%	128%	100%
abiotic depletion	kg Sb eq	255%	260%	155%	121%	165%	257%	128%	100%
global warming (GWP100)	kg CO2 eq	226%	252%	128%	104%	171%	224%	116%	100%
photochemical oxidation, non-b	kg C2H4	244%	361%	258%	100%	292%	245%	104%	141%
acidification	kg SO2 eq	256%	192%	190%	100%	181%	289%	130%	133%
eutrophication	kg PO4 eq	453%	207%	162%	106%	176%	300%	117%	100%
water use	m3	780%	151%	127%	100%	672%	1034%	508%	396%
land competition	m2a	631%	155%	139%	100%	610%	959%	458%	358%
	Min	Max	1						
Lowest impacts	100%	115%	4						ľ
Low impact	116%	150%	4						ľ
High impact	151%	250%							ľ
Highest impacts	251%								ļ

Best efficiency gives lowest results, but also some differences depending on biomass and specific impacts

Well to tank comparison Scenario 1


		N.C	01	01			
	Biomass	Miscanthus	Straw	Straw	Wood	Wood	Wood
	Process	Allothermal Circulating Fluidized Bed Gasification	Centralized Autothermal Circulating Fluidized Bed Gasification	Decentralized Entrained Flow Gasification	Centralized Autothermal Circulating Fluidized Bed Gasification	Allothermal Circulating Fluidized Bed Gasification	Centralized Entrained Flow Gasification
	Code	ICFB-D	CFB-D	dEF-D	CFB-D	ICFB-D	cEF-D
	Company	TUV	CUTEC	FZK	CUTEC	TUV	UET
Category indicator	Product	BTL-FT	BTL-FT	BTL-FT	BTL-FT	BTL-FT	BTL-FT
cumulative energy demand	MJ-Eq	100%	219%	290%	206%	112%	217%
abiotic depletion	kg Sb eq	107%	263%	164%	257%	134%	100%
global warming (GWP100)	kg CO2 eq	123%	265%	138%	254%	151%	100%
photochemical oxidation, non-b	kg C2H4	141%	240%	176%	226%	156%	100%
acidification	kg SO2 eq	128%	166%	122%	209%	175%	100%
eutrophication	kg PO4 eq	506%	209%	100%	234%	208%	100%
water use	m3	573%	164%	100%	1332%	1375%	701%
land competition	m2a	331%	148%	100%	610%	622%	32 0%
	Min	Max					
Lowest impacts	100%	115%					
Low impact	116%	150%					
High impact	151%	250%					
Highest impacts	251%						
	—						

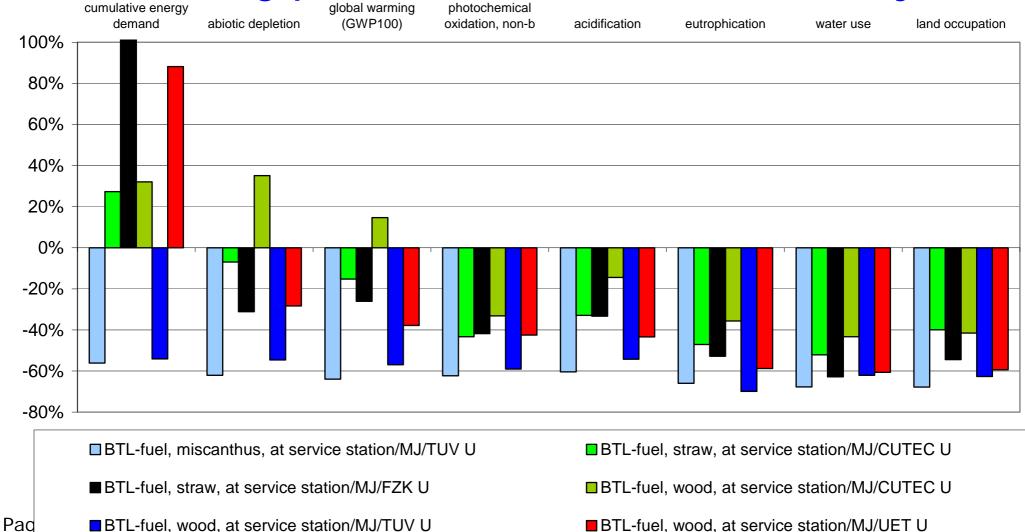
Interpretation, Scenario 1

- Only preferable if electricity supplied by wind power, but in this case high demand for capacity and supply security or flexibility
- Higher impacts in case of external hydrogen production with European electricity mix
- No clear ranking because of different advantages and disadvantages

Change of results Starting point -> Sc1,

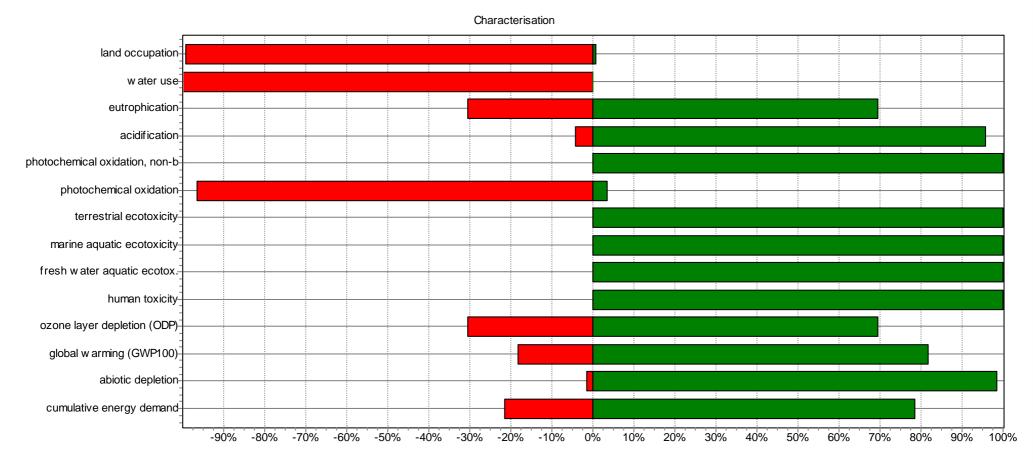
www.esu-services.ch

Change of results Starting point -> Sc1, wind electricity


rvices

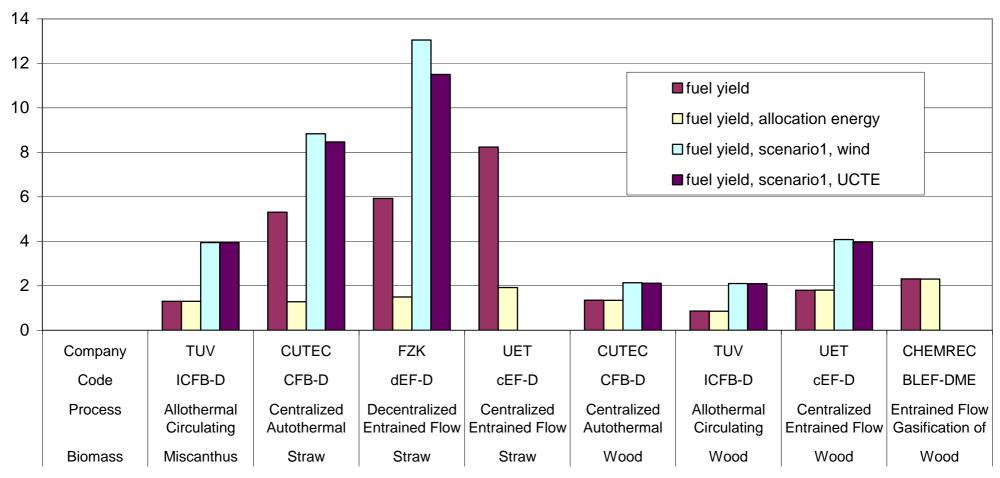
e

in


SILS

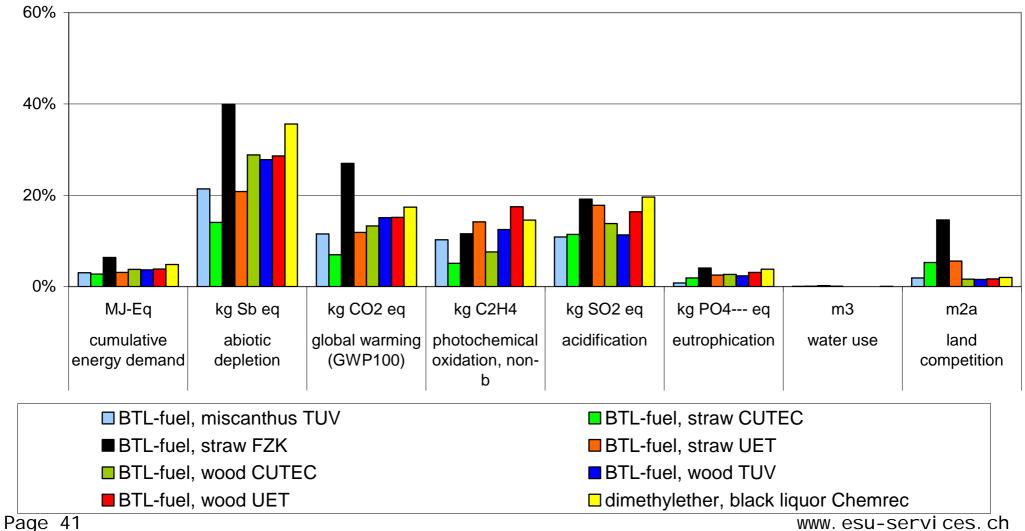
sulting

Uncertainties Straw, FZK against Wood, UET


Uncertainty analysis of 1 MJ material 'BTL-fuel, straw, at regional storage/MJ/FZK U' (A) minus 1 MJ material 'BTL-fuel, w ood, at regional storage/MJ/UET U' (B), method: CML 2 baseline 2000 V2.03 / RENEW. West Europe, 1995, confidence interval: 95

Fuel yields

fuel yield (tonnes oil equivalent per hectare)



Page 40

www.esu-services.ch

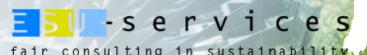
Share capital goods (starting point, MJ fuel)

Capital goods

- Share up to 40%
- Exclusion would give wrong picture
- Article published in the Int.J.LCA that gives further details and recommendations

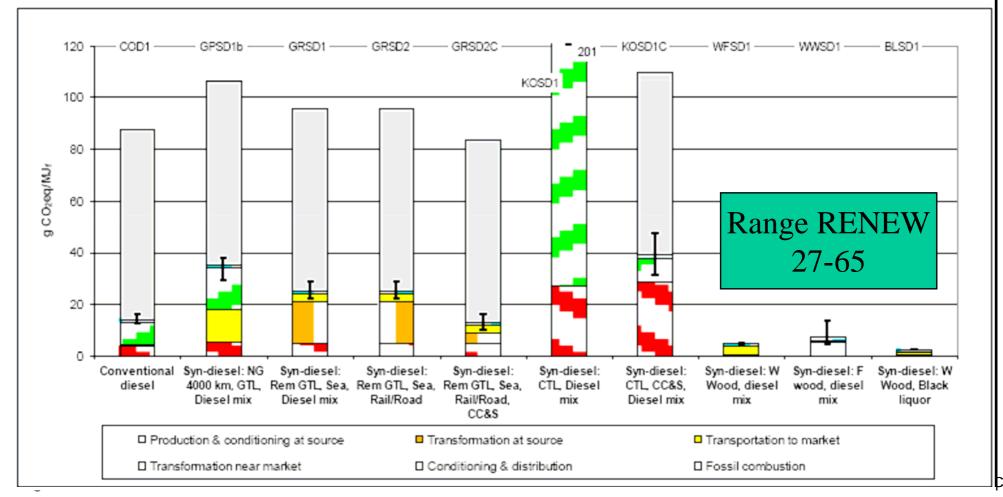
Frischknecht R, Althaus H-J, Bauer C, Doka G, et al., The environmental relevance of capital goods in life cycle assessments of products and services. Int. J. LCA, 2007. Online first. DOI:

http://dx.doi.org/10.1065/lca2007.02.309.


www.esu-services.ch

Page 42

Limitations of the study


- Pesticides, heavy metals and impacts of land occupation for biomass production not considered in the assessment
- No agreement on reliability of assessment methodologies of toxicity impacts

Concawe compared to RENEW results (fuel production)

Figure 4.6.2-3

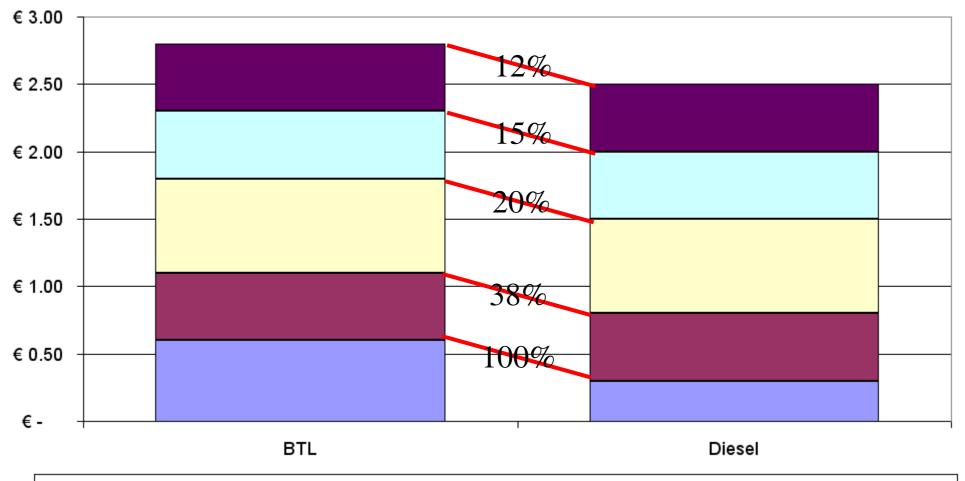
WTT GHG balance of syn-diesel pathways (including fossil CO₂ content of final fuels)

Differences with Concawe study

- Higher nitrogen input in RENEW study (5-6 vs. 2.5 g N/kg DS) 7 ca. +50% N2O
- Direct emissions (CH4 and N2O) lower because no data for conversion in Concawe study 7 ca. +10-20% in RENEW
- No infrastructure in Concawe study **7** +10-20%
- Credits for electricity production with biomass power plant mainly relevant for TUV

Peer Review LCA of BTL-fuel production

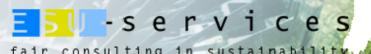
- Peer review according to ISO14040 in general quite positive:
 - Requirements are fulfilled
 - Data structure and results are exemplary
- Main critics are
 - No impact assessment for toxicological effects
 - No full cradle-to-grave LCA
 - No comparison to fossil fuel
- Reports have been finalized and published on the RENEW homepage together with full review comment



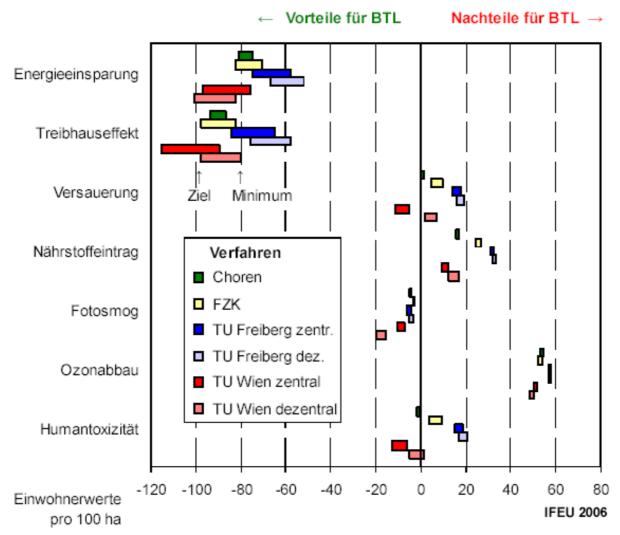
Questions to be answered

- Using BTL reduces the GWP by X% compared to fossil fuel
- Using a specific amount (e.g. 1 MJ or 1 kg) of BTL reduces the GWP by Y kg (or another appropriate unit) compared to fossil fuel

Calculations of potential reduction


□ fuel production ■ fuel distribution □ fuel taxes □ costs of the car incl. maintenance ■ taxes, car

F



And again: How much better are biofuels?

- If we want an answer like "the use of biofuel has ???% lower GWP than fossil fuels" than we have to include the all parts of the life cycle, e.g. for transports also cars and streets
- Neglecting certain parts of the life cycle, even if the same for both options, will bias the results
- System boundaries must be stated correctly if comparing reduction figures, e.g. well-to-wheel should include the wheel
- See <u>www.esu-services.ch/btl/</u> for background paper

BTL from short-rotation wood (IFEU study)

esu-servi ces. ch

Page 50