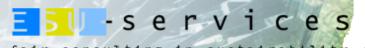
Accounting for biogenic NMVOC emissions in LCA

Niels Jungbluth ESU-services GmbH, Uster

6th International Conference on LCA in the Agri-Food Sector Zurich, November 12–14, 2008


Outline of the situation

- Isoprene and terpenes are emitted from photosynthesizing leaves of plant species
- Major contributor to global annual biogenic VOC emissions
 - 450 Mio. tonnes carbon in isoprene per year
 - 1'200 Mio. tonnes carbon in biogenic volatile organic compounds
- Contributes to formation of ozone (summer smog)
- Not accounted for in LCA so far

Goal of this presentation

- Investigate the relevance of biogenic NMVOC in the context of renewable fuels
- LCA of production pathways of biomass-to-liquid fuels (BTL or so called "second generation")
- Biomass resources straw, short-rotation wood and miscanthus
- Full life cycle including also NMVOC emissions of fuel production and use

NMVOC emissions in different studies (kg/ha/year)

Pollutant	Plant	Range	Mean	
Isoprene	Poplar	189-1600	476	
Monoterpene	Swiss forest	Factor 5	29	
VOC	Swiss agriculture	-	4	
VOC	Swiss grasslands	-	3.6	
NMVOC	German area	5-25	-	

> Measurements as microgram isoprene per gram of dry matter leaves per hour

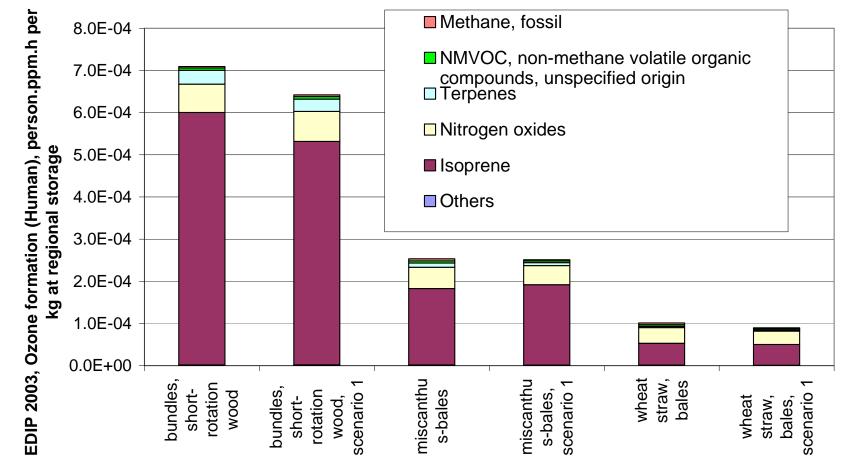
- Large range in literature
- > Dependent on plant species, season, climate (activity of the plant), etc.

Calculation of emissions

- Leaf weight (kg/ha)
- Emission factors (kg/kg leaf/h)
- Biomass yields (tonnes / ha)
- Country specific correction factors depending on irradiation, sunshine hours, temperature
- Richardson S. (2002) Atmospheric Emission Inventory Guidebook. Third Edition. CORINAIR: The Core Inventory of Air Emissions in Europe, EEA: European Environment Agency
- Sanderson M. G. (2002) Emission of Isoprene, Monoterpenes, Ethene and Propene by Vegetation.

Life cycle inventory

	leaf weight (kg/ha)	biomass harvest (kg dry matter/ha/period)	lsoprene (kg/kg leaf/h)	other NMVOC (kg/kg leaf/h)	(kɑ/ha/a)	Monoterpene (kg/ha/a)
Willow-Salix	1500	176'844	3.40E-05	1.70E-06	53.1	2.7
Miscanthus	1250	15'547	1.60E-05	8.00E-07	21.6	1.1
Wheat	1250	8'618	1.60E-05	8.00E-07	20.1	1.0


- Emissions dependent on factors like species, climate, irradiation
- 3 types of biomass
- No differentiation concerning production patterns as e.g. organic production or yields

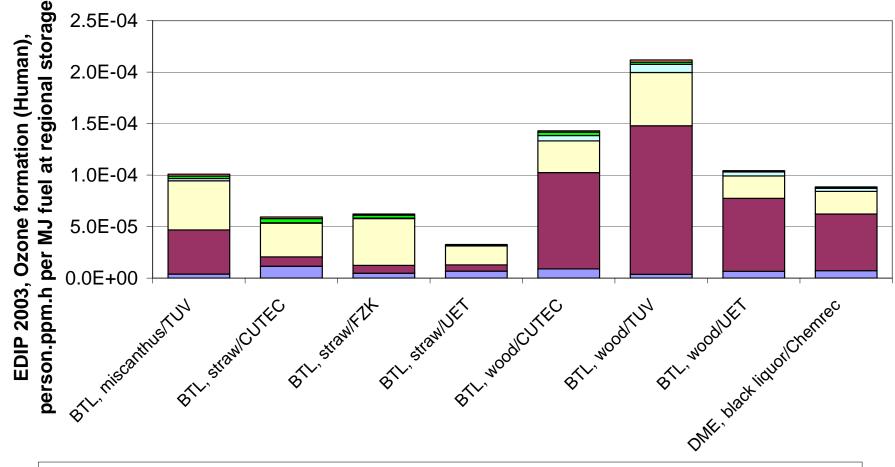
Life cycle impact assessment

- Exclusion of biogenic NMVOC in the original study because of uncertainties
- Sensitivity analysis with different methods shows some similarities
- CML 2001 does not provide factors for unspecified NMVOC
- For this presentation we use EDIP 2003, ozone formation (human) which accounts for several substances

Ozone formation of biomass production

Isoprene accounts for an important part of emissions

Large differences between types of biomass

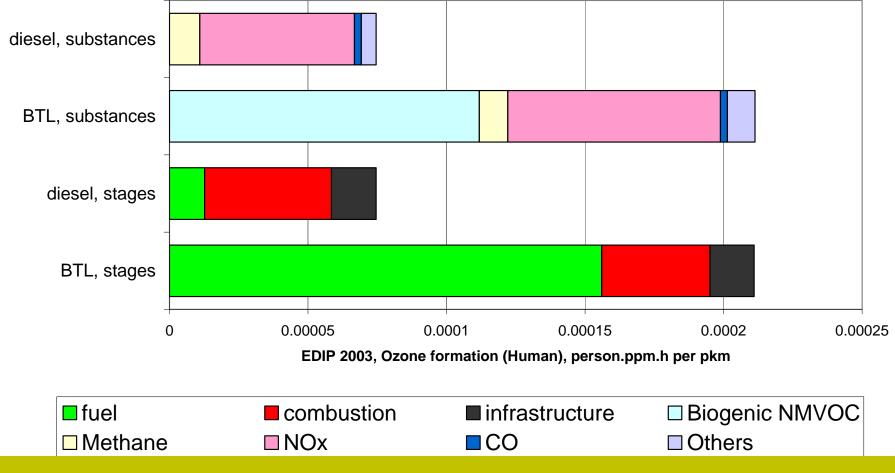

services

consulting in sustainability

Ozone formation of fuel production

services

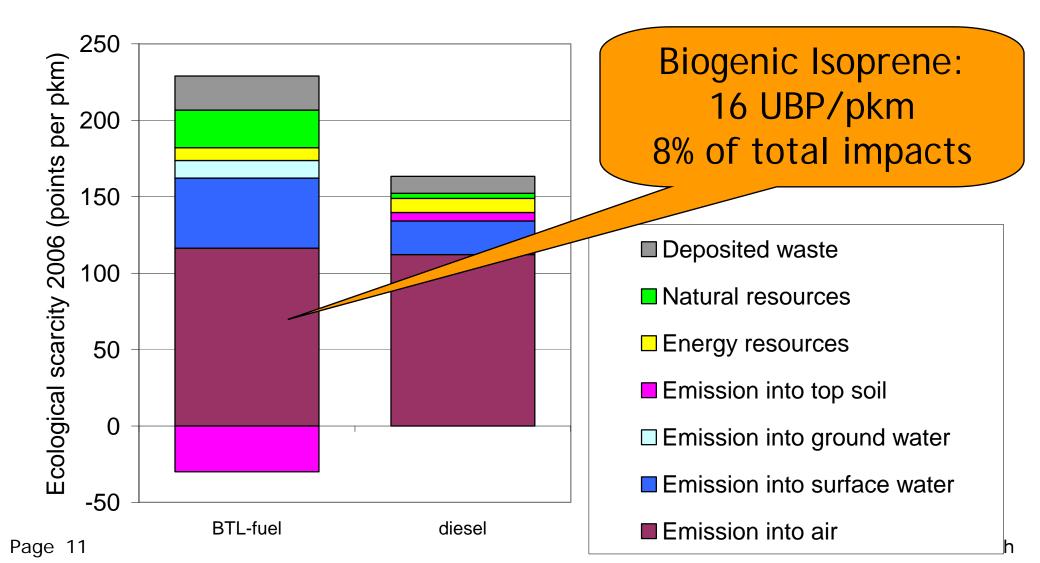
fair consulting in sustainability



□ Others ■ Isoprene □ Nitrogen oxides □ Terpenes ■ Carbon monoxide, biogenic ■ NMVOC

Other emissions e.g. from NOx from stack emissions get more relevant

- convicos


Using best BTL-fuel from short-rotation wood compared to diesel

- Combustion emissions lower, but fuel production due to biomass higher
- ➢ 50% of emissions are biogenic NMVOC

Total environmental impacts

Conclusions

- NMVOC emissions from growing plants contribute substantially to the photochemical smog indicator and to total environmental impacts
- Emissions of biogenic NMVOC can outweigh other improvements in the life cycle of renewables
- Uncertainties concerning differences between species, regions, natural conditions, etc. exist

Conclusions (2)

- Biomass resources with low NMVOC emissions should be a criterion in LCA of renewables
- Grassland and agriculture seem to be more favourable than forestry, especially conifers
- Further emissions arising due to cutting and harvesting are so far not considered

Discussion

- Zero emissions are not possible as long as biomass is growing
- Comparison with non-biomass products difficult because we cannot remove biomass from all land areas
- Should we only account for a change compared to a reference state?

Literature

- Life cycle inventory of producing BTL-fuels including data for the biogenic NMVOC emissions are published in EcoSpold format in a European project (<u>www.esu-</u> <u>services.ch/renew.htm</u>)
- Sanderson M. G. (2002) Emission of Isoprene, Monoterpenes, Ethene and Propene by Vegetation. Hadley Centre technical note 40, retrieved from: www.metoffice.com/research/hadleycentre/pubs/HCTN/HCTN_40.pdf
- Richardson S. (2002) Atmospheric Emission Inventory Guidebook. Third Edition. CORINAIR: The Core Inventory of Air Emissions in Europe, EEA: European Environment Agency, Copenhagen, DK, retrieved from: <u>http://reports.eea.eu.int/EMEPCORINAIR3/en/tab_content_RLR</u>