

ライフサイクルアセスメント 生命週期評估 전 과정 평가 வாழ்க்கை வட்டப் பகுப்பாய்வு ارزیابی چرخه عمر Evaluarea Ciclului de Viață Posuzování Životního Cyklu Bizi zikloaren analisi Olelusringi hindamine Lífsferilsgreining Levenscyclusanalyse Livscyklusvurdering Livscykelanalys ^{Pag}Elinkaariarviointi

Environmental impacts of food production and consumption

Niels Jungbluth ESU-services Ltd, Schaffhausen www.esu-services.ch

SimaPro Webinars PRé Consultants bv 12.11.2019

Environmental impacts of food production and consumption

Niels Jungbluth ESU-services Ltd, Schaffhausen www.esu-services.ch

SimaPro Webinars PRé Consultants bv 12.11.2019

Overview of themes

- About us: ESU-services Ltd.
- Impacts and reduction potentials for food consumption
- ESU-database for food production and consumption
- \rightarrow Time for questions
- Further case studies
 - Life cycle management for canteens
 - Food losses in LCA
 - LCA of chocolate
 - LCA tool for SME's

fair consulting in sustainability

Dr Niels Jungbluth

Over 20 years of experience in life cycle assessment

Founded 1998 as an ETHZ spin-off

Who are we?

Christoph Meili

Clients from industry, NGOs, administration, universities

Own LCA database with more than 6'000 datasets

Our motivation

- Sustainability is a major challenge for humanity
- Environmental impacts must be reduced over the full life cycle of products and services
- We apply transparent life cycle thinking to help our customers for reducing their environmental footprint

Our services

- Full-scale Life Cycle Assessments (LCA)
- Key parameter and simplified LCAs
- LCI data acquisition and management (data-on-demand)
- LCA project management
- Ecolabelling and environmental product declaration (EPD)
- Literature surveys
- Critical peer reviews
- LCA training & coaching
- Regional SimaPro Centre (LCA software) in Switzerland, Germany, Austria and Liechtenstein

fair consulting in sustainability

LCA METHODOLOGY

	© ESU-services Ltd. (2019)	One environm	ental issue	Several issues				
	LCIA method: Impact category	Cumulative Energy Demand	Carbon footprint	Ecological footprint	Ecological scarcity	ReCiPe	Environmental Footprint (PEF)	ImpactWorld+, Midpoint
Resources	Energy,non-renewable	\checkmark	Ø	Ø		\checkmark	\checkmark	
	Energy, renewable	\checkmark	Ø	Ø		Ø	Ø	Ø
	Ore and minerals	Ø	Ø	Ø		\checkmark	\checkmark	
	Water depletion	Ø	Ø	Ø	\checkmark	\checkmark	\checkmark	
	Biotic resources	Ø	Ø	Ø	Ø	Ø	Ø	Ø
	Land occupation	Ø	Ø	\checkmark		\checkmark	\checkmark	
	Land-transformation	Ø	Ø	Ø	Ø	\checkmark	\checkmark	Ø
	Only CO ₂	Ø	Ø	\checkmark	Ø	Ø	Ø	Ø
	Climate change incl. CO ₂	Ø	\checkmark	Ø	\checkmark	\checkmark	\checkmark	\checkmark
	Ozone depletion	Ø	Ø	Ø		\checkmark	\checkmark	
	Human toxicity	Ø	Ø	Ø		\checkmark	\checkmark	
	Particulate matter formation	~		\checkmark	\checkmark			
suc	Photochemical ozone forn	ologic	al scarc	•itv•		\checkmark	\checkmark	Ø
sic	Ecotoxicity	ungic	aiscait	ity.		\checkmark	\checkmark	
шi	Acidification	nreher	nsive re	flects		\checkmark	\checkmark	
ш	Eutrophication		151 • • , 1 •			\checkmark	\checkmark	
	Persistant organic pollutar Sy	viss nol	licy targ	rets		Ø	Ø	Ø
	Odours		iney tang	,•••,	Ø	Ø	Ø	Ø
	Noise 11SC	d for as	ssessme	ent of		Ø	Ø	Ø
	Ionising radiation	a ioi a				\checkmark	\checkmark	
	Endocrine disruptors	oducts.	compa	nies		Ø	Ø	Ø
	Accidents	<i>caaccs</i> ,	e omp <i>u</i>		Ø	Ø	Ø	Ø
6	Wastes	nd for	the who	ole		Ø	Ø	Ø
Jers	Littering				Ø	Ø	Ø	Ø
đ	Salinisation	eco	nomv		Ø	Ø	Ø	Ø
	Biodiversity loss		liellij		Ø	Ø	Ø	Ø
	Erosion	Ø	Ø	Ø	Ø	Ø	Ø	Ø
Framework	Reference	GLO	GLO	GLO	СН	GLO	RER	GLO
	Publication	2007	2013	1996	2013	2016	2018	2019
	Damage assessment	Ø	Ø		Ø	V	Ø	partly
	Normalization	Ø	Ø	GLO	CH	GLO	GLO	Ø
	Weighting		Ø	Ø		\checkmark		Ø

Ecological Scarcity Method

www.esu-services.ch

Different projects finances by

- WWF Switzerland
- Energieforschung Zurich ewz-electricity supply Zurich
- Swiss Federal Office for the Environment, FOEN

Here we present our personal summary

ENVIRONMENTAL IMPACTS OF CONSUMPTION PATTERNS IN SWITZERLAND AND REDUCTION POTENTIALS

Key questions

- What are the total environmental impacts of consumption and how can they be allocated to consumption areas?
- What are the most important aspects within consumption areas?
- Which options exist for the reduction of environmental impacts due to consumption?

> Difficulties and rebound effects for implementation are not considered

Environmental impacts of lifestyles?

Public

Private

Main stages for the calculation

1. Total impacts CH

www.esu-services.ch

fair consulting in sustainability

TOTAL IMPACTS IN SWITZERLAND MEAN FIGURES OF SWISS EE-IOA AND SIMPLIFIED "LCA&TRADE" APPROACH

Total balance of Swiss impacts

> Imports cause 60% of environmental impacts due to Swiss consumption

SHARE OF CONSUMPTION AREAS CALCULATION WITH SWISS EE-IOA

Share of consumption areas

-services

22 Mio. UBP'13 Per person and year How are they allocated to final consumption?

Share of consumption areas

> Food purchase is the most important consumption area with 28%

> 60% of environmental impacts in nutrition, energy use and mobility

Different indicators and share of final consumption areas

Energy and GHG indicators underestimate the contribution of nutrition

Different possibilities for the reduction of environmental impacts

Lobbying

FURTHER ANALYSIS OF CONSUMPTION AREAS TOP-DOWN AND BOTTOM-UP ASSESSMENT WITH LCA AND COMPARISON WITH EE-IOA

fair consulting in sustainability

-services

Options to assess the environmental impact of the foods consumed in Switzerland

> Different starting points for detailed analysis

Environmental impacts of food purchases

- > Top-Down and bottom-up come to comparable results
- > Further analysis of consumption areas based on LCA and market statistics

Product groups within nutrition

> Meat and animal products cause 44% of total impacts

> Wine, coffee and beer are important for beverages

REDUCTION POTENTIALS ANALYSIS OF SINGLE CHANGES IN LIFESTYLES EXAMPLE FOR BUYING ORGANIC FOOD PRODUCTS

Guidance for consumers

- Much knowledge available to consumers
- Difficulties to do the right thing, because often no universal statements can be made
- Many individual decisions on nutrition in contrast to one-off decisions on mobility and housing
- Not just doing what's easiest to do

Focus on relevant information necessary

Vegetarian Meals

> Vegetarian meals reduce the environmental impacts considerable

Comparison of different diets

Extend of animal products is important driver

Reduction potential - Vegan diet

Vegane Ernährung	Reduktionspotenzial	Gesamtpotenzial	Region	Quelle	Annahmen
Konsumbereich	Ernährung				
Umweltbelastung, CH	-31.4%	-8.6%	СН	Schätzung	Vegan
	-31.4%		СН	Jungbluth 2016	Ernährungsszenarien vegan
	-46.0%		СН	Jungbluth 2012	Verzicht auf tierische Produkte
	-58.7%		СН	Leuenberger 2009	Vegi-Mahlzeit statt Fleisch

- Estimation 32% less environmental impacts on food consumption
- Total potential = Reduction potential * Share of consumption area

- > Only purchase organic products
- > No heated greenhouses and air transports
- Additional transports for rise of imported products

Comparing average food consumption

> An overall advantage for organic diet turns to a disadvantage between 06 and 13

> Relevant changes in assessment of land use, pesticides and heavy metals in soils

Organic products vs conventional

- Disadvantages on yield and related impacts
- Advantages for fertilizer and pesticides
- Pros and cons for different indicators need to be weighted

➢ So far difficult to make a final judgment based on LCA

fair consulting in sustainability

TOTAL POTENTIALS ANALYSIS FOR THE PRESENT SITUATION IN SWITZERLAND

Page 44

Calculation for consumer's options

Potentials	Assumptions
Healthy and sustainable	Reduction on animal products and luxury food, no heated greenhouses and air transports, less food waste
A++ appliances	Cooking, cooling, washing with efficient devices
Conscious enjoyment	Resign on luxury food (alcohol, coffee, chocolate)
Diet	BMI <= 25 for whole population
Less food waste	No food waste at consumer
No plastic bags	Resign on plastic bags
Organic products	Organic, no heated greenhouse and air transport, surplus transport
Regional food	Switzerland imports 50%, thus only no air transports possible
Seasonal food	No fruits and vegetables from heated greenhouse
Shopping on foot	No cars or public transport for food shopping
Tap water	Resign on mineral water and drink tap water
Vegan nutrition	No animal products

Total potential for reduction of impacts

> Most relevant is a reduction of animal products

> Buying local/seasonal low potential because only vegetables and fruits affected

services

fair consulting in sustainability

All consumption areas

Vegetarian diet and substantial reduction of mobility demands have highest potentials

Sum-up only partly possible

The golden rules for consumers

- Recommendation from an environmental and health point of view: two portions each of meat and eggs at 120 grams per week
- Consciously enjoying alcohol, chocolate and coffee
- Reduction of spoilage and overconsumption
- Energy-saving household management (cooking & cooling)
- Move yourself instead of shopping by car
- No flown in goods and greenhouse products
- Biologically produced products
- > Foodprints.ch for a healthy and sustainable diet

Personal actions to reduce CO2

Belief (% of respondents*)

Facts (CO₂ kg reduction p.a. per capita**)

22%	No more plastic bags	3 Highly over- estimated
18%	One flight less per year	680
16%	Modern heating and insulation	770
15%	Regional and seasonal food	80
14%	Fuel-efficient driving	340
10%	No more meat consumption	790
5%	Switching off standby modes	53

*) Representative online survey of 1500 Germans (18+ years), September 2019

**) A.T. Kearney computations based on German Environment Agency, co2online, Federal Statistical Office, etc.

- > Unfortunately, myths often stick better than facts
- When debunking myths, concentrate on facts and do not repeat the myth you try to debunk

Facts, not myths

- Mean of transport is more relevant than overall distance
 → Efficiently planed long-distance transports by sea or on land are often less relevant than local production differences! However: Avoid air transport by all means.
- Better packaging can prevent waste! → If packaging prevents food waste, more packaging results in lower overall impact on the environment. Rule for packaging is: As much as necessary, as little as possible. Avoid over-packing such as heavy glass bottles or multiple packages

Facts, not myths

3. Ecologically optimized agriculture combines benefits from conventional and organic agriculture. It is efficient, uses pesticides sparingly, closes local nutrient and water cycles and leaves room for biodiversity.

Summary

- Our methodology allows to investigate and compare the impacts of behavioural changes in all areas of consumption
- Most important are the areas of nutrition, mobility and energy use in households
- Combination of EE-IOA for broad overview and LCA for detailed analysis
- The highest potentials exist for a vegetarian diet, reduction of mobility and energy savings in households

fair consulting in sustainability

Add on database for SimaPro

ESU WORLD LCA FOOD DATABASE

ESU-services global food database

- First work on cooking in India (1994-1995)
- Further development with Ph.D. thesis of Niels Jungbluth on meat and vegetable consumption in CH (1996-2000)
- Several projects of ESU-services for extension
- Today more than 2'500 datasets related to food production and consumption
- Background data and methodology according to ecoinvent v2.2
- Data can be provided for SimaPro and other software

Contents ESU data-on-demand

- Simplified agricultural production services: application of fertilizers
- Vegetables: spinach, salad, tomatoes, lettuce, potatoes, onions, asparagus, etc.
- Fruits: apples, strawberries, cherries, grapes, oranges, vine, melons
- Animal products: pork, veal, beef, lamb, poultry, eggs
- Dairy products: butter, milk, milk powder, yoghurt, cheese

Contents (Part 2)

- Drinks: apple & orange juice, mineral water, tap water, beer, wine, milk, coffee
- Sweets: chocolate, cake, ice cream
- Meals: canteen, home-made, ready-to-eat
- Household appliances: cooking stoves and ovens, microwaves, refrigerators, carbonisation devices, coffee machine
- Food consumption: packages, transports, cooking, consumption patterns
- Pets: horses, dogs, cats, rabbits, fish, animal fodder

Unique features of the ESU food database

- Complete and consistent balancing of all food products relevant to the Swiss market
- The whole chain from field to plate is covered for many products
- Most data include information on food waste and water use
- All data include also flow specific uncertainty information for Monte-Carlo simulations

Offers

- Background library for SimaPro with 2500 system processes as (1900 €)
- SimaPro library together with ESU database with 8800 unit processes (7500 €)
- Single unit or system processes (275 €)
- Calculation of LCIA indicators (starting from 190 €)

Time for questions

Other themes?

- Further case studies
 - Life cycle management for canteens
 - Food losses in LCA
 - LCA of chocolate
 - LCA tool for SME's collaboration
- Or <u>finish</u>

fair consulting in sustainability

OLCA commissioned by the Swiss SV group

LCA APPLICATION FOR A CANTEEN OPERATOR

Goal and Scope for the project

- Total food purchases
 - in 240 canteens
 - for 19.2 million meals
 - worth more than 150 Mio. CHF
- Functional unit: 1 meal served
- Share of different types of ingredients?
- Improvement potentials developed together with WWF and ewz (energy supply)

Data collection in a modular LCA

- Inventory of 12'000 articles purchased from different suppliers
- Total purchase of 21'000 tonnes food and non-food
- Linked to 200 different type of products in ESU data-ondemand database
- Further coverage of packaging, type of conservation, origin and mode of transport

Composition of the average canteen meal

Product group	grams per meal
meat/poultry	108
fresh vegetables	310
bread	108
dairy products	135
eggs	5
fish	21
sweets	32
convenience	137
beverages	225
non-food	42
Share organic	<1
Share CH/ship/air-transported	61% / 9.5% / 0.5%

GWP of meal preparation in canteens

87.000 t CO2-eq per year (66.000 t CO2-eq goods and 21.000 by preparation)

Production of food much more important than preparation

> Meat and fish dominate the results with more than 50%

Full LCIA of total purchases per meal

Supply chain and agricultural production even more important in a full LCIA

The programme ONE, TWO, WE

> Customer can choose between improvement options for their canteen

in cuctai

Improvement: Season calendar for fruit and vegetables

kg CO2-eq per kg veg	etable	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Green asparagus	CH-Lorry	n.a.	n.a.	n.a.	1.9	1.9	1.9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	ES-Lorry	n.a.	n.a.	n.a.	2.1	2.1	2.1	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	MX-Air	22.7	22.7	22.7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	PE-Air	24.9	24.9	n.a.	n.a.	n.a.	n.a.	24.9	24.9	24.9	24.9	24.9	24.9
	US-Air	n.a.	18.7	18.7	18.7	18.7	18.7	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Zucchini	CH-Lorry	n.a.	n.a.	3.9	3.9	0.6	0.6	0.6	0.6	0.6	3.9	3.9	n.a.
	ES-Lorry	0.9	0.9	0.9	0.9	n.a.	n.a.	n.a.	n.a.	n.a.	0.9	0.9	0.9
	IT-Lorry	0.7	0.7	0.7	0.7	n.a.	n.a.	n.a.	n.a.	n.a.	0.7	0.7	0.7
	MA-Lorry	1.0	1.0	1.0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.0	1.0
Zucchini TK	FR-Lorry	1.8	2.0	2.2	2.3	1.1	1.1	1.1	1.1	1.1	1.3	1.5	1.6
Zucchini TK	CH-Lorry	0.7	0.7	0.7	0.8	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7

> Assessment of global warming potential

- Season calendar to assess monthly routes
- > Main difference: heating greenhouse and air freight

Main Improvement options followed up

- Less meat per meal and more vegetarian meals
- Supply chain management for vegetables from heated greenhouses
- Reduction of air-transportation
- Less food waste

Each customer can choose the extra services and offers for their canteen Each customer can choose the extra services and offers

Status after the first year

- 42 canteens participating
- 418 Tonnes of CO2-eq saved, 5.5% reduction
- SV purchased 54 tons less meat and fish and at the same time 35 tons more vegetables
- Reduction of 35% air-transportation saved 5 tonnes of CO2eq

Conclusions

- Life cycle management is necessary and feasible to reduce environmental impacts of canteens
- In-depth LCA analysis helps for internal and external argumentation
- Collaboration with suppliers in order to reduce impacts in the supply chain is necessary
- The holistic approach on environmental improvements was welcomed by many customers and guests

fair consulting in sustainability

FOOD LOSSES IN THE LIFE CYCLE OF LASAGNE BOLOGNESE: READY-TO-SERVE VS. HOME-MADE

Page 75

Key questions

- What is better from an environmental point of view? Ready-made lasagne or home-made lasagne?
- How do the following factors influence the performance of both types of lasagne?
 - amount and type of food waste
 - energy consumption in production and preparation
 - efficient preservation vs. fresh ingredients

Important system boundaries

- Ready-made vs. home-made lasagne
- FU: Preparation of two portions (400g) of lasagne Bolognese ready to be heated in oven at home
- Same composition for both types of lasagne
- Ready-made packed in aluminium container, chilled
- Fresh ingredients: seasonal, conventional, regional
- Food waste data from Gustavsson et al. (2011), Kranert et al. (2012), Lorrayne (2008) and industry data

Challenges and points of discussion

 Is it possible to compare home-made and ready-made lasagne as they have different functions?
 →How can we generally deal with slightly different functions in LCA?

- How valid is a portion size of 400g for both products?
- Can it be assumed that the left overs on the plate are the same due to the same portion size?

Losses of selected ingredients

Ready-made lasagne leads to more food losses for conservable ingredients

Food losses

Ingredients consumed Processing and distribution Storage Production in industry Retail Household

- > Total about the same (24% to 26% losses from farm to oven)
- Differences in the life cycle stages

Greenhouse gas emissions

- Total GHG emissions about the same
- High uncertainties
- > Main differences in distribution, production and preparation

Total environmental impacts

> Total environmental impacts are comparable

Ingredients production is most important

Summary

- No clear ranking of losses or impacts is possible
- Ready-made lasagne leads to more food losses for conservable ingredients than home-made lasagne
- Differences not based on the food losses but on energy consumption for preparation and storage, packaging etc.
- Ingredients are most important
- Best case assumption for fresh ingredients → greenhouse production or ingredients from abroad worse impacts
- Function of both products is slightly different

General conclusions

- Food losses are important when considering environmental impacts of food consumption
- More and better data is needed in order to make detailed comparisons
- Avoidance of food losses can reduce costs and environmental impacts

Life Cycle Assessment of Swiss Chocolate Niels Jungbluth, Alex König, ESU-services Ltd

www.esu-services.ch

www.esu-services.ch

Key questions

- What are the differences between different types of chocolate?
- What are the environmental impacts of chocolate consumption?
- What are the most important aspects within the production of chocolate?
- Which potentials exist for the reduction of environmental impacts due to chocolate consumption?

Background

- Projects commissioned by German Aluminium Association (GDA) in cooperation with European Aluminium Foil Association (EAFA), Düsseldorf, Germany
- Büsser S. and Jungbluth N. (2009) LCA of Chocolate Packed in Aluminium Foil Based Packaging. ESU-services Ltd., Switzerland
- www.esu-services.ch/projects/packaging/
- Here we present our personal point of view

Goal and Scope for this study

- Functional unit: 1 kg of chocolate for consumption in the household
- Packed in aluminium foil and wrapped with paper
- Cocoa data from Ghana
- Consumption in Europe

Life cycle impact assessment

- Evaluation of CML impact categories in original study
- Here use of the LCIA method ecological scarcity 2013 (Switzerland) to simplify the presentation
- Evaluation of greenhouse gas emissions and cumulative energy demand as most common category indicators

Impacts per process stage

Page 91

GWP: Comparison of different chocolates

> Buy in tax free and 1500 km flying home can add considerable impacts

Shares in chocolate production

Land use and heavy metals into soil due to agricultural production of coca beans as main environmental impact factors

Chocolate and other food products

www.esu-services.ch

Page 95

Summary

- Environmental impacts of chocolate are dominated by the agricultural production of cocoa beans and milk
- Packaging and distribution is of minor importance
- Dark chocolate has the lowest impacts
- Tax free chocolate transported by airplane can cause considerably higher impacts
- Chocolate is a product with comparable high impact

Seventh Framework Programme of the European Union

THE SENSE TOOL FOR SME'S

Question

How can we develop a tool for the SMEs in the food sector to do a simplified life cycle assessment?

INTRODUCTION

Context of the SENSE-project

- 23 Partners from 13 countries
- Aimed at SMEs in food supply chains
 - Fruit industry, aquaculture, meat & dairy industry, expendable
- End of the project was January 2015

What is the objective of SENSE?

Develop a harmonised system for environmental impact assessment of the food and drink industry

- Online tool for calculating environmental footprints
 - Cooperation over the supply chain in the tool
 - Includes social aspects
 - Regionalized approach (certain impact categories)
- Environmental Identification Document
 - Added value

Importance of SMEs for Europe

European Union

- 99% of all enterprises in the private economy
- 2 of 3 jobs

SENSE TOOL METHODS

Data used for the assessment: KEPIs

Definition:

- KEPIs are «Key environmental performance indicators»
- For each production step, linked to key environmental challenges
- Simple to measure & easy to understand
- Built on accessible production data, e.g.
 - \rightarrow Litre diesel use per kg feed produced

Evaluation:

On average, **95**% of the total environmental impact can be assessed with the selected indicators compared to a full LCA

Impact assessment

A set of consistent environmental impact assessment methods and indicators

Decision: Choice of methods from the ENVIFOOD Protocol

- The protocol is based on ISO, the ILCD handbook and the PEF guide (European Commission on the Product Environmental Footprint)
- Different method to assess water use

Abiotic resource depletion, acidification, climate change, freshwater ecotoxicity, eutrophication (freshwater, marine, terrestrial), human toxicity (cancer, non-cancer), land use, water resource depletion.

THE SENSE-TOOL

Page 109

www.esu-services.ch

-services

Example result: 1litre milk, climate change

- > Entered KEPI data are analysed with chosen method
- ≻ SMEs can
 - gain insight in the share of environmental impacts of the different production steps
 - Define hotspots
 - Compare perfomance over the years

Milk production at farm Feed production Dairy production

CONCLUSION: SMES AND THE SENSE TOOL

Page 114

www.esu-services.ch

The SENSE-tool - designed for SMEs

- Online tool
 - No installation of new software
 - Easy accessible, also for suppliers
- Intuitive, user friendly design
 - Food chain is visualized with symbols
- Regionalized data is automatically included
 - E.g. water use is calculated with data from chosen country

The SENSE-tool: Difficulties for SMEs

- SMEs need valuable time to collect data
 - \rightarrow No full LCA, only key data asked
 - \rightarrow Step-by-step description & short film
- Dairy SMEs feel uneasy asking suppliers (farmers)
 - \rightarrow Confidential
 - \rightarrow Direct entry of data possible (Guest)
- EID not well known yet, advantage not visible for SMEs
- LCIA indicators difficult to explain for non-LCA experts
- ➡ SMEs expect quick results based on small amount of data

The SENSE-tool: Advantages for SMEs

- Less time consuming than a full LCA
- Less costs than a full LCA
- Overview over impacts of different processes
 → define hot-spots
- Comparison between different years
- Benchmarking
- Added value with the Environmental Identification
 Document (EID) that summarizes main impacts
 - \rightarrow brand differentiation

Sources

• Ramos, S. et al, Oct. 2014:

«Sense tool: Easy-to-use web-based tool to calculate food product environmental impact»,

Contributions by ESU-services

http://www.esu-services.ch/projects/lcafood/sense/

 «Fakten und Zahlen über die kleinen und mittleren Unternehmen (KMU) der EU»

http://ec.europa.eu/enterprise/policies/sme/facts-figures-analysis/index_de.htm 8.9.2014, 4 p.m.

Granted, my car consumes a lot ... But, Your Californian asparagus needs also 5 liters per kg!

www.esu-services.ch

Copyright notice

All rights reserved. The contents of this presentation (a. o. texts, graphics, photos, logos etc.) and the presentation itself are protected by copyright. They have been prepared by ESU-services Ltd.. Any distribution or presentation of the content is prohibited without prior written consent by ESU-services Ltd.. Without the written authorization by ESU-services Ltd. this document and/or parts thereof must not be distributed, modified, published, translated or reproduced, neither in form of photocopies, microfilming nor other - especially electronic - processes. This provision also covers the inclusion into or the evaluation by databases. Contraventions will entail legal prosecution.

In case of any questions, please contact:

Dr. Niels Jungbluth, CEO - Chief Executive Officer ESU-services Ltd. - fair consulting in sustainability Vorstadt 14 CH-8200 Schaffhausen <u>www.esu-services.ch</u> tel +41 44 940 61 32 jungbluth@esu-services.ch

© Copyright ESU-services Ltd. 13.11.2019

www.esu-services.ch