LCA of biogas from different purchased substrates and energy crops

Matthias Stucki, Niels Jungbluth

ESU-services Ltd., Uster, Switzerland

47th LCA Discussion Symposium Berne, 23. April 2012

Introduction

- Most Biogas in CH from sewage sludge, slurry, or biowaste.
- In order to improve the yield of biogas plants, operators often purchase or cultivate substrates with high energy content.
- Environmental impacts of biogas from these substrates?

Substrates considered in this study

Sugar beet

Fodder beet

Beet residues

Substrates considered in this study

Maize silage

Molasses

Glycerine

- a) From vegetable oil
- b) From waste oil

Life cycle inventory analysis

- New LCI of biogas from different substrates
 - Literature data
 - Results from survey (ENERS)
- New LCI of methane purification technologies
- Updated LCI of biogas combustion in cogeneration unit
- Modelling of biogas based car driving with ecoinvent data

Page 6

Biogas system overview

www.esu-services.ch

Results: car transportation with biogas

Greenhouse gases

Results: car transportation with biogas

Ecological Scarcity

Page 8

Allocation

Allocation: scenario

Scenario: Including application of digestates Ecological Scarcity

fair consulting in sustainability

ervices

Results: yield and impact per hectare

Page 12

fair consulting in sustainability

ervices

Results: yield and impact per hectare

www.esu-services.ch

Results: yield and impact per hectare

- Yield and environmental impacts of producing biogas from cultivated energy crops are in the same range as compared to liquid biofuels.
- The case of sugar beets indicates that the bioethanol route is more efficient than the biogas conversion route for producing biofuels.

Fair consulting in sustainability

Results: electricity generation from biogas

Ecological Scarcity

Conclusions 1

- Some environmental benefits of using biogas from purchased substrates compared to fossil fuels
- Higher environmental impacts of biogas from purchased substrates compared to waste substrates
- Allocation of digestate application has a high impact on results

Conclusions 2

- Pure biogas production from purchased substrates does mostly not comply with thresholds for tax reductions
- In contrast to electricity from biogas produced with wastes, electricity from biogas produced with cultivated crops is not favourable from an environmental view: emissions from crop cultivation and biogas combustion

Conclusions

The current trend towards using high energy substrates made from agricultural crops leads to higher environmental impacts and a worse environmental performance of biogas.

Thank you very much for your attention!

Matthias Stucki

stucki@esu-services.ch

www.esu-services.ch

ESU-services, Uster, Schweiz

Download the study and electronic data: <u>http://www.lc-inventories.ch/</u>

Acknowledgements: The work presented here was made possible thanks to financial support from the Swiss Federal Office for Energy (FOEN).

Page 19

Additional Slides

Page 20

www.esu-services.ch

fair consulting in sustainability

-services

Results: car transportation with biogas

Eco-Indicator 99 (H, A)

-services

fair consulting in sustainability

Allocation of biowaste digestion in ecoinvent v2.2

Agricultural digestion			
plant (Biowaste)			
	Substrate treatment	Biogas production	Digestate application
Biogas plant		100%	-
Energy consumption	55%	45%	-
NH3 & N2O emissions	47%	39%	14%
CH4 & HS emissions	55%	45%	-
Emissions into soil	50%	-	50%
Anaerobic digestion			
plant (Biowaste)			
	Substrate treatment	Biogas production	Digestate application
Biogas plant	69%	31%	-
Energy consumption	69%	31%	-
Ammonia emissions	64%	22%	14%
CH4 & HS emissions	69%	31%	-
Emissions into soil	50%	-	50%

Biogas purification

3 Technologies in CH

- pressure swing adsorption (PSA)
- glycol washing
- amino washing

Glycol washing in Pratteln